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ABSTRACT 

Various concepts of ellipticity of finite-difference 
approximations to general elliptic partial differential sys- 
tems are reviewed and introduced, and rules are given for the 
cmstruction of stable schemes with high approxination orders, 
even for singular perturbation problems. Fast multi-grid 
solvers for these discrete schemes are described. These sol- 
vers a l so  provide a convenient way o€ separating the questions 
of accuracy and stability (using, for examp1e;both central 
and upstream differencing). The local mode analysis, which 
accurately predicts the efficiency of multi-grid solvers, is 
presented. Concrete examples are given in terms of Cauchy- 
Riemann e y u a t i o n s  and  the steady-state inconpresslble N a v i e r -  

Stokes equations. Their multi-grid solution, based on new 
."distributive" relaxation schemes, costs about  seven work- 
units. 
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1. INTRODUCTION 
The Multi-Level Adaptive Technique (MLAT] is a numerical 

strategy of solving continuous problems by cycling between 
coarser and finer levels of discretization. For general par- 
tial differential boundary-value problems this technique pro- 
vides a method for flexible, nearly optimal discretization, 
together with a very fast solver of the discrete equations. A 

sequence of uniform grids (or "levels"), with geometrically 
decreasing mesh-sizes, is employed. The cooperative solution 
process on these grids involves relaxation sweeps over each 

I of them, coarse-grid-to-fine-grid interpolations of correc- 
tions and fine-to-coarse transfers of residuals. MLAT is des- 
cribed in [B31, where historical notes are provided. A more 
recent brief survey is [ B 7 ] .  In this article we discuss the 
construction of discrete approximations to general elliptic 
boundary-value problems, and their fast multi-grid solutions. 

. The various multi-grid (multi-level) algorithms used as 
fast solvers of discrete equations arc briefly presented in 
Sectior. 2 .  

tems are extensively discussed. The motivation is the need 
for general and convenient rules of constructing finite- 
difference approximations to elliptic systems, with any pres- 
cribed order of accuracy, and with sufficient stability. This 
need is nct restricted to multi-arid methods, of course, but 
the multi-grid algorithm offers new possibilities. 

difference approximations on u n i f o r m  grids only, since non- 
uniformity is obtained simply by using non-coextensive levels 
(see [B5]). We can also assume the boundary to coincide with 
grid lines (see Sec. 3.5 in [B5]). Furthermore, the questions 
of accuracy and stability are effectively separated in multi- 
grid algorithms. Stable approximations are needed in the 
relaxation phase, while the accuracy is determined by the 
approximation used in the residual transfers, which itself 
need not be stable (see Sec. 3.11). 

In Section 3 ,  concepts of ellipticity for discrete sys- 

First, in multi-level structures we need t o  c o n s t r u c t  
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The ellipticity concept for finite-difference equations 
is more involved than in the differential case, because of its' 
dependence on the mesh-size h: In the Fourier analysis, com- 
ponents with wavelengths smaller than 2h are absent, which 
may exactly be the components that determine the local proper- 
ties (such as ellipticity) of the differential operator. The 
common practice of attempting at "positive type" difference 
approximations is sometimes successful, but lacks generality. 
Positive type approximations are not available for high-order 
equations, or for high-order approximations to low-order equa- 
tions. Furthermore, positive type is neither necessary nor 
sufficient for stability. The definitions of discrete ellip- 
ticity introduced by Thorn6e [T2], [T31, and Thom6e and 
Westergren [Tw] are in a sense too close to the differential 
definition. They are generally useful only for "sufficiently 
small" h .  For the real mesh-sizes used in many practical 
problems these definitions do not yield the desired stability 
properties. 
definitions, includinc the scaled ellipticity concepts 

mentioned in [B21 and extensively developed by Frank [Fll- 
IF61. We then point out that the crucial stability properties 
depend quantitatively on a certain "measure of ellipticity", . 

which, unlike scaled ellipticity, is useful for singular per- 
turbation problems even when the reduced problem is not eilip- 
tic. The study here is made in terms of elliptic s y s t e m s  of 
equations, whereas previcus studies of discrete ellipticity 
treated approximations to just one  elliptic differential 
equation. 

structing finite-difference systems can skip the first parts 
of Sec. 3 and go directly to Sec. 3.10, where stable schemes 
of arbitrary orders are described. In this context high-order 
"upstream" differencing to singular-perturbation problems is 
discussed, together with its relation to artificial viscosity. 
Adding explicit terms of artificial viscosity is another, 
perhaps preferable, alternative. High-order approximat,ions 
to equations in divergence form, such as V.(a(x)Vu) are also 
presented. Then, in Sec'. 3.11, the multi-grid technique of 
combining upstream and central differencing is introduced. 

We therefore discuss various corrections to these 

Readers interested only in the practical aspects of ccn- 
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The stability of difference operators is intimately 
connected to their fast multi-grid solution. Specifically, 
the error can be efficiently smoothed by relaxation only if 
the difference operator has good "measure of ellipticity". In 
Sec. 4 we present the theoretical aspects of the multi-grid 
processes, bringing out that relation between stability and 
fast multi-grid solutions. The tool being used is the' l o c a l  
mode analysis ([B21, (B31) which predicts the multi-grid per- 
formance very precisely, so much so that it is routinely used 
in optimizing the algorithms and in debugging the programs. 

The fine-to-coarse and coarse-to-fine optimal inter- 
polation orders are determined by general simple rules 

each particular problem all we have to decide is the relaxa- 
tion scheme. 
like the construction of good difference equations, requires 
expertise and'physical insight. 
routine exists which can evaluate the efficiency (i.e., the 
smoothing ratel of any prcposed scheme. The routine, 

developed in collaboration with Nathan Dinar, is called 
SMORATE, and is available on [MTI. 

e derivable from order-of-magnitude mode analysis, so that in 

The construction of good relaxation schemes, 

But a general computer 

In the last three sections we describe in detail the 
discretization and multi-grid solution of three concrete 
elliptic systems: Cauchy-Riemann equations, steady-state 
Stokes equations and steady-state incompressible Navier-Stokes 
equations. This work was also done in collaboration with 
Nathan Dinar. The description proceeds (as indeed did the 
research itself) from the simplest system (Cauchy-Riemann) to 
the more complicated ones. A new type of relaxation, called 
Distributive Gauss Seidel ( D G S ) ,  has been developed, which 
yields a smoothing factor p = .5 for each of these systems. 
As a result, the multi-grid solution of each system requires 
about seven work units (i.e., a computational work equivalent 
to about seven relaxation sweeps over the finest grid). This 
is true in particular for the incompressible Navier Stokes 
equations in an arbitrary domain with large Reynolds numbers. 
The procedure may work even when the steady-state solution is 
unstable, provided the coarsest grid is fine enough to 
resolve the ucstable modes and the coarsest-grid equations 
are solved directly. 

- 
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' For the (inhomogeneous) Cauchy-Riemann system there 
exists an even faster multi-grid solution, which s o l v e s  the 
second-order discrete equations to the level of truncation 
errors in less than 24n additions, where n is the number of 
discrete unknowns, without using any multiplications or divi- 
sions, and without taking advantage of the smoothness of the 
solution (Sec. 5.5) . 

, Readers familiar with multi-grid procedures can start 
their reading at Sec. 5 ,  and learn about ellipticity of dis- 
crete systems first in terms of the concrete examples. 

Multi-grid procedures have been developed for 'non- 
elliptic flow problems, such as transonic flows (see ( B 3 1 ,  
[ S B I ) ,  and (in a preliminary way only) compressible Navier- 
Stokes and initial-value problems (see [B71). For the multi- 
l e v e l  adaptive techniques of treating boundary layers and 
other singularities - see [BSI. 
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2 .  MULTI-GRID ALGORITHMS . 
In this chapter we summarize the types of multi-grid 

algorithms that are currently used as fast solvers for various 
flow problems. 
to [B3], (B41 and [B5]. We start with the more universally 
applicable type, the accommodative Full Multi-Grid (FMG) F u l l  

Approximation Scheme (FAS) algorithm. The denomination 
becomes clear later, when we describe algorithms'which are 
not accommodative (fixed algorithms), or not FMG (cycling 
algorithms), or not FAS (the correction scheme). All the 
algorithms are based on Cycle C (see [B3], where a sample 
program is given and explained). 
based on Cycle A or Cycle B (see Fig. 2 in [831 ,  and more 
details in [B21), but they are not often used. 

For more explanations the reader is referred 

Similar algorithms could be 

2.1 Difference equations notation 

differential equations 
The differential problem considered is a system of q 

and m boundary conditions 

BjE(x) = G ~ ( Z )  ( 5  E an , j = 1 ,..., m) . (2.lb) 

where = (xl,. . . ,xd) are the independent variables, 

E = (F l,..., 
tions (the given data), and L and B are differential 
operators, not necessarily linear. 

The problem is discretized on a sequence of M levels 

(grids), with mesh-sizes 
The discrete approximation to 2 on the k-th level is 

k k denoted g = (U, /... ,Uk)T . 
problems, the grids may be "staggered". That is, on the same 
level k , different functions Uk may be defined at 
different points in each grid cell. (See for example, 
Figs. 5.1 and 6.1 below.) 

are the real unknown functions 
and G = (G1, ..., G,) are real known func- 

'g) T 
g = (U1, ..., 

Fq) 
j 3 

hl,h2, ..., hM , where hk+l = hk/2 . 
In non-scalar ( i . e . ,  q > 1) 

9 

j 

The discrete approximation to (2.1) on the k-th level is 
written in the form 
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( 2 . 2 )  k k  k k 
3 3 

L. ( 5 )  = F .  ( 5 )  , ( E  E Rj , j = 1, . . . , q +  m) I 

where the first q equations (1 E j s q) approximate the 
interior equations (2.la) and the other m equations 
approximate the boundary conditions ( 2 .  lb) . Thus , ilk is 
the intersection of the lattice 

j 

mdtk = t (ajl,.. . ,aja) + hk(wl,.. . ,vd) : vi are integers) j 

with R (for 1 G j c q) , or with some extension of an 
(for q < j f m) . Note that different interior equations 
may be centered at different grid positions (the lattice 
shifts gj may be different for different equations j 1 .  For 
purposes of multi-grid processing it is important to keep the 
discrete equations in a form analogous to the differeiitial 
equations. This means first that equations ( 2 . 2 )  are written 
in the difference-quotients form, without, for example, multi- 
plying through by some power of hk . 
can be used in the actual program, but for a correct for- 
mulation of the transfer between levels we need the equations 
in their differential-analog form. A l s o ,  we should avoid 
mixing thc boundary conditions and the interior eqaations. 

Such a multiplication 

I T r  k k We will use the vector notation 4 = (L1,...,Lq+M 
)T , writing ( 2 . 2 )  in the compact form k k = (F ,,..., Fk q+m 

In the linear case gk can be viewed as a q x (q+m) matrix 
of dif fercnce-quotient operators independent of 

Interpolations. The operation of transfer, or interpolation, 
from level k to level k’ will generally be denoted by 
Ik . That is, if is a function defined on the grid with 

k’ k mesh size hk , then Ik Uk is an approximation to g 
defined on the grid with mesh size hkl . In psrticular, 
1;” 

(Lagrange) interpolation of some specific order. The order 
need not be the same for all component functions ui . The 
order of interpolating ui should not be smaller than the 
highest order of derivatives of ut in (2.1). When higher- 
order interpolation is needed (Step B below), we will denote 

$ . 

k’ 
gk 

will denote an interpolation , usually a polynomial 

k 
k 

- 8- 



it by H . should not be less than the 
largest sum mi+pi, where mi is the order of a derivative 
of ui and pi is the approximation order of that derivative. 
In other words, the II interpolation should be exact for all 
polynomials for which the finite-difference approximation is 
exact. The fine-to-coarse transfers Ik k- l  is made by some 

local averaging; i.e. , I:-' u;(g) is some weighted average 
k of values u.(y) at several points y close to E . These 
3 -  

transfers and interpolations are specified in more detail in 
later chapters, where specific problems are discussed. 

The order of IIk k+l ui 

The purpose of the multi-grid algorithms described below 
is to compute a fast approximition to 
the finest-grid equations. 
denoted ,u . In the process, equations ( 2 . 2 )  on coarser 
grids 
side. The modified right-hand sides of the k-th level 
equations will generally be denoted by fk = (fl,. ..,fq+m 
and'will depend on 
next finer level. The solution to that modified equation 
will still be denoted by 
will still be denoted by . 

rf'l , the solution to 
The evolving approximation is 

M 

( k  < MI will be modified by changing their right-hand 

k ,  
k 

,u k+l , the current approximation on the 

Uk , and its computed approximation 
-k 

The meaning of the modified equation and the modified 
k yk depends on the scheme. In the Correction Scheme (CS) g 

is designed to be an approximate correction to gk+l  , hence 
the modified right-hand side will be 

k k + l  - f k  = Ik+l E 
where 

k + l  = f k + l - L k + l  Uk+l 
E - - - 

( 2 . 4  

( 2 . 5  

k + l  is the residual function of the current approximation 2 
at the finer level. In the Full-Approximation Scheme (FAS)  
the designed approximate correction to 

! -Ik+l uk+' - 
k + l  is 

g 
, hence the modified right-hand side will be 

The difference 

gives, in this case, an estimate for the local truncation 
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error on level k : i.e. , an approximation to 

Since - is the residual of the true differential solution 
I! on the finest grid, any computed approximation gM is a 
satisfactory approximation to ; as soon as the ncrr. of its 
residuals IIrM]I is smaller than l\-r-,l\ . Note, however, 
that is not computed, since (2.6) and (2.7)'hold only 
when k is not the finest level. But, by Taylor expansions 
one can get 

M 
f.1 

T~ = a(x)hkP + o(hkP) (2.9) 
Q -  

where p is the approximation order and ~ ( x )  is independent 
of h . Hence 

I1 T k + l l l  !23 2-p II Tk II I (2.10) 
M which can be used to estimate 1 1  11 in our stopping 

criteria. 

2.2 Accommodative rnS Full Ihlti-Grid (FAS FKG) Algorithm 
The Full Multi-Grid (FMG) algorithms, unlike cycling 

algorithms (see Section 2.6), work themselves up from the 

coarsest level 1 to the finest M. At each stage we will 
denote by II the "currently finest" level, that is, the 
largest k for which an approximate solution uk has 
already been computed. By k we will generally denote the 
current o p e r a t i o n  level. Hence kcll . In "accomodative" 
al.gorithms the decision to switch to finer levels or back to 
coarser ones depends on internal checks, usually based on 
relative magnitudes of residuals (see Steps E and G below). 
The steps of the accomodative FAS FMG algorithm, also 
flowcharted in Fig. 2.1, are as follows. 
A .  Solving coarsest-grid equations. Set 11=1 . Compute an 
approximate solution u1 to the coarse grid equations (2.2 , 
k=l), either by relaxation or by some direct method. (The 
term direct method here means a non-iterative solution of 
linear systems. If the system in nonlinear, the "direct" 
method will include a few Newton iterations, where the linear 
system at each iteration is solved directly.) 
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n 
( 4 - 2  I- 

NO 
u 

NO 

I YES IYES 

F I G U R E  2.1. Accommodative FAS Full Multi-Grid (FAS FMG) 
Algorithm. 

In this version the coarsest-grid ( k = 1 )  correction equations 
are solved by relaxation. The notation is explained in the 
text. Tb.e operation in the detached-line box 
(T-extrapolation) is optional. 
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B. Setting a new finest level. If !L=M , the algorithm is 
terminated. If not, increase 11 by 1 . Introduce, as the 
first approximation for the new finest level, the interpolated 
function 

(2.11) 

(The higher-order interpolation used here is such that 
interpolation errors, in any norm, are at most comparable to 

' a  truncation errors on level 11-1 . I  Set = E 

sufficiently small tolerance. ( Ek serves a s  the tolerance 
for solving the k-level equations; see Step E. For c g  , a 

realistic value is introduced in Step G below, so the value 
El? 1s only temporary. c R  = 0 may be used.) A l s o  set 
k = t .  
C .  Starting a new operation level k . Put ek = +a (or a 
very large number), for re'asons to become clear in Step E 
below. 
D. Relaxation sweep. Improve gk by one relaxation sweep. 
(The role of relaxation is t3 smooth t h e  err3r gk - gk , SO 

that it can later inexpensively be approximated on a coarser 
grid. Details of the relaxation sweep and its smoothlng power 
are discussed in later chapters dealing with specific 
equations. Generally, the sweep may consist of several passes, 
e.g., one pass for each of the q+m equations ( 2 . 2 )  -- 
except for those equations which are automatically satisfied, 
such as Dirichlet boundary conditions.) Concurrently with 
the sweep, compute some norm ek of the residuals. (Usually 
"dynamic" residuals are computed, since they are least 
expensive: 
relaxation steps.) 
E. Testing convergence and its rate. If convergence at the 
current operation level has been obtained (ekG:Ek) , go to . 

Step I. If not, and if the relaxation convergence rate is 
still satisfactory (i.e., if ekcnek , where rl 1 s  a pres- 
cribed factor to De discussed in Scc. 2 . 3 )  set ek=ek and 
go back to Step D (i.e., continue relaxation. On returning 
later back to the present Step, 
value of ek 1 .  
(ek> , and the level is not the coarsest ( k > l ) ,  go to 
-tep F. (The slow convergence implies that the error 

I I '  

0 0 

they are almost calculated anyway as part o f  the 

- 
- 

- 
ek will contain the previous 

If however the convergence rate is slow 
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Uk-uk - -  
a coarser level.) 
F. Transfer to coarser level. Decrease k by 1 . 
Introduce,as the first approximation for the new (the coarser) 
level k the function 

is smooth, and should therefore be approximated on 

( 2 . 1 2 )  

Define the right-hand side for the new level by ' 

- fk = - -  Lk Uk + I;+l(fk+l - - L k+l - Uk+l) , (2.13) 

which, by ( 2 . 1 2 )  , is the same as (2.6). As the tolerance for 
this new problem, set ck - - 6ek+l . (Since the coarse-grid 
solution is designed to correct the fine grid solution, its 
residuals should be smaller than those at the fine grid, but 
there is no point in having them much smaller. 6=0.2 is 
usually small enough. See also Sec. 4.7.2.) 
G .  Finest level stopping parameters. Concurrently with the 
computation of gk , calculate also the norm of 1 1  f. - Ek 1 1  I 

using the same norm as used for the dynamic residuals (see 
Step D). If k=i-1 , set. 

k 

(2.14) k ell = 2-p 1 1  f. - - Fk {I  , 
where p is the order of approximation (cf. (2.10). We will 
thus s t o p  on level R when its residuals become comparable to 
the 

H. 
one 
and 

I. 
If 

truncation errors). 
Coarse-level solution. If k=l (the coarsest level) , 
may like to solve-the problem directly (see Step A above) 
go to Step I. Otherwise, g o  to Step c. 
Employing a converged solution to correct a finer level. 
k=2 I go to Step B. If kcR , make the correction 

k + l  - k+l k+l k k k+l) 
SEW - %LD + 'k (1 - 'k+l %LD (2.15) 

k where Ik+l must be identically the same operator as in 
(2.12). Then increase k by 1 and go to Step C. 

2.3 Switching aTd Sto?ping Criteria. 

A good general value for the fine-to-coarse switching 
parameter rl (see Step E) is 

rl = max E(:) (2.16) 
5 - where p is the smoothing factor per sweep (see Sec. 4.1 ' 
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below), which may vary over the domain if the problem is 
nonlinear or if its coefficients are not constant. Actually, 
the precise value of rl (as well as that of 6 , in Step F )  

is not critical. If coarse-grid corrections are not efficient 
enough, may always be increased a little, a safe value 
being for example rl = -'I2 u . If has large variations 
over the domain, the switching test (ek-<'lek) can be made 
separately in subdomains, possibly resulting in partia2 
retaxation s w e e p s ,  i.e., sweeps which are confined to some 
subdomains. (Partial sweeps may be important only in multi- 
grid processes, and not in pure relaxation processes, becacse 
it is only with respect to smoothing, and not with respect 
to convergence, that errors at separate subdonains are 
practically decoupled from each other.) 

- 

In non-scalar (q>l) problems, the different relaxation 
passes for different interior equations j (lsj$q in ( 2 . 2 ) )  

may have different smoothing factors, in which case one can 
make more passes on some of them, provided there is no 
serious feedback of errors from those equations to others. 
(See an example in Sec. 7 . 3 . )  Similarly, even in scalar 
(q=1) problems, relaxation passes over. boundary equations 
( 9 '  j cq+m in ( 2 . 2 ) )  may have slower smoothing than the 
interior passes. In such a case one can makc several 
(usually two) boundary passes €or each interior pass, 

Generally when we can ignore coupling (or feedback) 
between the smoothing processes of the different equations, 
then for every Na passes on equation a there should be 
made N passes on equation B , where Nalogp,  roughly 
equals N ~ I O C J G ~  , pj being the smoothing factor of equation 
j . Where the relaxation passes are coupled, however, the 
optimal strategy should in principle be based on minimizing 
the overall smoothing factor per work unit; i.e., minimizing 

- 
8 - 

(2.16a) 
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where ~ ( 2 , : )  is the largest eigenvalue of the amplification 
matrix (see Sec. 4.1) of the compound sweep (including 
possibly several passes on some equations), and N is the 
number of work-units in that sweep. In practice, however, 
only small values of Na , N B  and N should be used,so as 
not to approach the limits of the smoothing process (see 
Sec. 4.3). 

2.4 Truncation Extrapolation. 

At convergence, it is easy to see that the approximate 
local truncation error (see (2.7)) is 

- T k P &  k I k c  9. II-Fk - .  (2.17) 

is the residual of the "currently finest" solution Thus, - T ~  - 
- u' in the level-k equations. It follows from (2.9) that 

k k '  - 'I To -. Zo 
FJ a(hkP - heP) 

(2.18) 

where = indicates equality up to higher-order terms in hk 
and hL . Up to such higher order terms, we can therefore 
replace by the more accurate I, . The place to do it 
is with Step G: If k=E-l we replace the right-hand side 

k 

is the approximation order of the j-th equation. pj 
where 
For k < l l - l  , (2.19) should not be used again, i.e., using 
(2.13) in the usual way would now give 

9. SO that the correction in f k+l (approximately equal to Io 
is automatically transferred to the coarser levels. 

h 

Replacing by - f is called "local truncation 
extrapolation", or briefly 'I-extrapolation. It is a trivial 
addition to the algorithm, and can improve the sclution very 
much, even in cases where global-truncation (Richardson) 
extrapolation cannot, since g l o b a l  error expansions in terms 
of h do not always exist. 

Note that for staggered grids the interpolation Ik+l in 
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( 2 . 1 2 )  is not trivial. For T-extrapolation it should be of 
the suitable hicher-order. For further discussion and 
results of T-eXtrapOlatiOnS, see [ B 5 ]  and [D2]. 

2.5 Fixed Algorithms 

A "fixed", in contrast to "accomodative", algorithm is 
one in which the internal checks (in Step E above) are 
replaced by pre-assigned flow: the switch to the coarser 
level k-1 is made when a pre-assigned number N, of 
relaxaticn sweeps on level k has been completed. The 
parameter Nc , like n , depends on the smoothing factor P. 

the switch to a finer level k+l may be made as soon as a 
total of NF relaxation sweeps has been made on level k 

since the last "visit" to the finer level. (Thus, if 
wNc<NF<(vA1)Nc , then v switches from k to the coarser 
level k-1  are performed before switching to k + l  .)  In 
some cases NF=NF depends on the level k . 

- 

. A good choice seems to be N,=[log.l/log;l . Similarly, 

k 

An example of the flow of a fixed algorithm is shown in 
Fig. 2.2. This flow is suitable for solving any problem with a 
relaxation smoothing faccor 5 2'P'd (as, for example, in the 

standard case of Poisson equatim and in practically all the 
problems discussed in this paper). This algorithm performs 
a total of 3(M+l-k) sweeps on level k , k=1, ..., M. 

The main advantage of fixed algorithms is 'in saving the 
work of computing the dynamic residuals at each relaxation 
sweep. This is a signficant saving when the problern is very 
simple. For example, for 5-point Poisson problems about 40% 
of the relaxation time is saved. In more complicated 
problems, like the Navier-Stokes equations, the saving 1s 
quite marginal. 

In simple problems, where the fixed algorithms are needed, 
they are as efficient (per sweep) as the "accomodative" ones. 
In fact, the latter behave like fixed. 

2.6 The Correction Scheme (CS) and Cycling Algorithms. 

For linear problems, instez; of the Full ApprOXimatlQn 
Scheme ( F A S )  used above, we can use the Correction Scheme, in 
which, for k<ll , 1~'"Uk is designed to be the correction 
to u k+l . The only changes to the algorithm are as follows. 

-16- 



- 
,eve 

1 
- 

2 

,3 

. 
I 

VI- I 

M 

‘I, /4 

2hM 

hM 

. -  

A 
b 

0 

I 0 b 1 
END 

= Higher order interpolation (2 .  I t  1 

= Linear interpolation of corrections (2.15) 

= Transfer to coarser level (2.12) - (2.13) 

= Transfer to coarser level (2.12) - (2. I3 1 where 
7-extrapolation (2.19) can be made - 

= r relaxation sweeps 

= The stage in the algorithm where the error 
i s  smaller than the  discretization error of 
that level 

FIGURE 2 . 2 .  Fixed  F u l l  M u l t i - G r i d  A l g o r i t h m .  
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k In Step F, (2.12) is replaced by - u = O  , and (2.13) by 
I k- -'k+l(i k k+l-Lk+luk+l) - -  . In Step I replace (2.15) by 

k+l- k+l  k+luk . The tolerance computed in Step G UNEW-UOI,D+l k 
should either require a special calculation by 

or be prescribed by 

Ell = 2-p gII I ( 2 . 2 2 )  
0 

where ell 
very first relaxation on level & . Or else, arbitrarily 
small cII may be prescribed for cycling purposes. 

is the value of the (dynamic) residual norm at the 

"Cycling", in contrast to Full Multi-Grid (FMG) 
algorithms, are simplified algorithms which start when a first 
approximation 2 is already given on the finest grid. It 
may be a trivial approximation, such as g =O. Or it may be 
the approximate solution of some other, related, "previous" 

OM 

problem (as in continuation processes, or in evolution 
problems, or in optimization procedures, etc.). Thus, in 
cycling algorithms onc sets k=k=M, E ~ = E ~  and starts at 
Step C of the above algorithm. 

0 

Correction-Scheme and cycling algorithms are usually 
used in the first stages of developing a multi-grid code, 
because they are simpler to write and debug. In particular, 
a cycling alsorithm which is allowed to'run more cycles than 
usually needed ( is small, and Step G is skipped) is very 
useful since it shows t h e  asymptotic multi-grid convergence 
factor. This factor can be independently calculated by the 
local mode analysis (see Secs. 4.6, 4.7.5) and is therefore 
very basic in detecting conceptual.errors as well as bugs in 
the program. 

0 

A general easy way €or converting CS programs to FAS 
is described in [B6], Lecture 12. 
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3 .  E L L I P T I C  DIFFERE; LE E@UATIO?:S AND SYSTEMS 

The boundary-value problems discussed in this paper are 
elliptic. In this chapter various concepts of ellipticity and 
the construction of elliptic finite-difference systems are dis- 
cussed. Some of these concepts are important in understanding 
smoothing properties of relaxation schews. Readers interested 
only in the practical aspects of constructing difference 
equations are referrg directly to Secs. 3.10 and 3.11. 

3.1 Ellipticity of the differential system 
We first review the concept of ellipticity for a system 

of differential equations. This will be defined for linear 
systems. Nonlinear systems of equations will be called ellip- 
tic if the linearized equations are elliptic. We consider 
real systems only: complcx systems can be rewritten as real 
ones. 

In case the differential system (2.la) is linear, we can 
write it in thc form 

a j  = a/3xj , y j  is a nonnegative integer, ( j  =l,...,d) , 

We assume q 2 1 and d 2 2 . 
Roughly speaking, a system is to be called elliptic at a 

point x if the differencial equations at ~f are such that 
boundary value problems with these equations are uniquely and 
stably solvable, at least in small enoilgh rectangular domains; 
or, equivalently, the system ( 3 . 1 )  is to be called elliptic if 
it is solvable for all Fourier components 
at least far sufficiently high IIgI1 , where 

- 

F,(x) = A  exp(i j - E )  , a 
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' a n d  a = l,...,q . Thus ,  t h e  e l l i p t i c i t y  of (3.1) depends  on  
t h e  r e g u l a r i t y  f o r  s u f f i c i e n t l y  h i g h  

c harac t eri s t i c  ma t rdz 
11g11 , 3f t h e  

k(x,z) = { k a B ( x f i _ ) } ~ , B = l , . . . , q  , (3.2) 

which  i s  t h e  F o u r i e r  t r a n s f o r m  o f  ( 3 . 1 ) .  The characteristic 

form ( o r  s p b o l )  and t h e  principal characteristic form ( O r  

p r i n c i p a l  s y r ~ 3 o Z )  o f  sys t em ( 3 . 1 )  a re  d e f i n e d ,  r e s p e c t i v e l y ,  
as  - 

L ( 5 , z )  = d e t  Il(x,g) ( 3 . 3 ) .  

L ( 5 , g )  = d e t '  L C X , ~ )  , ( 3 . 4 )  
and  

h 

where  d c t '  i s  t h e  p r i n c i p a l  p a r t  o f  t h e  d e t e r m i n a n t  d e f i n e d  

as  f o l l o w s :  I f  m '  i s  t h e  maximal d e g r e e  ( i n  2 ) o f  p o l y -  
, where ( i l , . . . , i  ) 

q n o m i a l s  o f  t h e  form Zlil 112i2 ... 11 g i g  
i s  a p e r m u t a t i o n  of (1, ...,q) , t h e n  d e t '  is t h e  p a r t  o f  
t h e  d e t e r m i n a n t  of d e g r e e  m' . Thus, E i s  t h e  d o m i n a t i n g  

p a r t  i n  L as 11511 * . Hence: 
- 

T h o  system ( 3 . 1 )  i s  calted cZliptic at the p o i n t  ' 5  if 
i ( x , g )  - # o f o r  a l l  real  # o . ( 3 . 5 )  

I n  t h i s  g e n e r a l i t y ,  t h e  d e f i n i t i o n  i s  d u e  t o  D o u g l i s  and  

N i r e n b e r g  [ D N I  . 
The c o n d i t i o n  (3.5) i m m e d i a t e l y  i m p l i e s  t h a t  m' = 2m 

i s  a n  e v e n  p o s i t i v e  i n t e g e r  ( t h e  t r i v i a l  case m ' =  0 b e i n g  
e x c l u d e d )  , and  

( 3 . 5 a )  2 m  0 < c(x)  llf1/2n'  G Ii(x,g)l 6 C'(x) I l s l l  . 
T h e  system ( 3 . 1 )  i s  c a l l e d  C Z Z i p t * : C  of c ? d ~ r  2 m  i n  f2 , i f  

(3.5) h o l d s ,  w i t h  t h e  same m' = 2 m  , a t  a l l  p o i n t s  E fl . 
I t  is c a l l e d  u n i f o r m l y  
h o l d s  u n i f o r m l y ,  i . e . ,  
a n d  C '  s u c h  t h a t  

c Il:II 2 m  l i (z , ; )  

elliptic of o r d e r  2 m  if ( 3 . 5 a )  
i f  t h e r e  e x i s t  p o s i t i v e  c o n s t a n t s  C 

E l l i p t i c  sys t ems  o f  order 2m r e q u i r e  m boundary  con- 

d i t i o n s  a l l  a round  t h e  boundary ,  a s  c a n  e a s i l y  be s e e n  by a 
F o u r i e r  a n a l y s i s  of t h e  homogeneous s y s t e m  ( h a v i n g  t h e  p r i n -  
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I 

cipal part only) with constant coefficients near a hyperplane 
boundary. Such an analysis also easily shows which sets of m 
conditions are suitable. Such a set is called "complementary" 
to the differential equations (see [ A D N ] ) .  It can be proved 
that: any linear uniformly-elliptic system with m comple- 
mentary boundary conditions (i.e., with conditions that are 
complementary at each boundary point to the principal part 
of the differential system at that point) can be solved on any 
sufficiently small donain, while on general domains such a 
problem has a discrete spectrum (discrete sequence of eigen- 
values) and all the sn;oothness properties one can expect. 
Namely, if the coefficients in the equations and in the boun- 
dary conditions, as well as the boundary itself, are all 
sufficiently smooth, one can prove various a priori estimates 
for derivatives of , which are as strong as one can expect. . 

For example, the following Schauder-type estimate is proved in 
[ A D N ]  : 

I n I U S ]  j+tg+6 

( 8  = 1, ... ,q) , 
where K is independent of , E and G . Here ta 2 0 and 
s6 E 0 are integers such that the degree (in - Z 1 of 

'lo: 8 (5,ii) is sa+tB , where !L& contains those terms in EaB 
that enter the principal part. are integers such that the 
order of differentiating U, in the k-th boundary condition is 
at most rk+ta. For any domain D ,  and any integer J and con- 

D stant 0 < 6 < 1 , the norm I w I  J+b  of a function cp in the 
domain D is defined by 

rk 

We see in ( 3 . 7 )  that U is only as smooth as logically - 
allowed by the boundar. conditions G . This is of course 
expected. But solutions to elliptic systems hnve also the 
distinct property that their smoothness in the interior of R ,  
away from the bomdary, does not really depend on the smocth- 
ness of the boundary and the boundary conditions. For example, 
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the following Schauder-type interior estimate can be pro;Jed: 

where R' is any compact subset of R , and K' depends on 
the distance from an' to an . (For the precise nature of 
this dependence, see [DNI.) 

The factors K and K' in (3.7)-(3.7a), and in similar 
stability and smoothness estimates, do not depend on - 1 5  € 

and , but they do obviously depend on d , q , m , sa and 

also depends on rk , 
cients in the boundary conditions, and on the smoothness of 
the boundary itself. Except for those, the sizes of K and 
K' depend only on some measure of the ellipticity of the 
system. We will need such a measure in' judging quantitatively 
the fitness of difference schemes, so,  for the differential 
case, we introduce such a measure here. 

and on the size and smoothness of the coefficients. K tB  
the size and smoothness of the coeffi- 

The largest value of C/C' for which (3.6) holds may be 
used as a measure for the ellipticity of the system. It can 
also be defined directly in terms of the (full) characteristic 
form L(x,g) , a definition which will be more useful in the 
discrete case. Thus, we call 

- 

the elLipticity meatsuhe of the system (3.1) at the point - x . 
E(L) = minQE(L,E) is called the ellipticity measure of (3.1) 
in the domain R . When the principal part of L is a power 
cf Laplace operator, E(L)  attains its maximal value E(L) =l. 
when E(L) decreases to 0 , the operator approaches local 
instability: Some small high-frequency perturbations (in E )  
are magnified (in E )  much more than other high-frequency 
psrturbatiocs. An example of such an opezator is 

(3.9a) a 2  , ( 0  < E  << 1) a 2  a 2  
ET- - -  2 . . * - -  L = -  

a x2 "d 

for which E ( L )  = E . Operators with such a degeneracy in 
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their principal part can be called d s g e n e r a z e  e l l i p t i c .  They 
should be distinguished from sinyuZal7 ; ~ ~ r t u 1 * 3 a t i o t z  o p e r a t o r s  
in which the small parameter ( E )  multiplies the entire prin- 
cipal part. 
are the scalar operators 

Typical singular perturbation elliptic operators 

a (3.9b) + ad % a 2  a2 a + ... t ( 7  + ... + - 2 )  +alax, - -  - 
a Xd 

3.2 Finite-difference operators and symbols 
On a uniform grid with rneshsize h we introduce the 

translation operators Eh = (Thl, ..., Thd) , defined by 
V V 1  Vd Th- u(x) = Thl . . . Thd u(5) = u (z+Vh) - I 

where 
integer components. In terms of Th we can define the finite 
difference operators 

= (v , , .  .., vd) will usually have integer or half- 

the averaging operator 

and t h e  difference-quotients operators 

We will use this notation with obvious modification: In two- 
dimensional problems, if ( x , y )  is used instead of (x1,x2) 

we will write a: instead of 3; . In multi-grid descriptions 
where a sequence of gries is used with mesh sizes 
we write ak instead of ahk  . When no confusion can arise, 
the superscript may also  be omitted or replaced by a capital 
superscript denoting forward or central differencing: 

hl, ..., h, , 
j 3 
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The finite-difference approximation to' (3.1) can generally 
be written in the form 

" 

(3.10) 
(x - E Q: , a = l,...,q) . 

liere 1 is a summation over a finite set of = (vl1..., vd) I 
V - 

with v usually being integers or half-integers. baBv(~,hl 
are real functions, usually rational in h . Thus 

j 

will usually be the finite-difference approximation to 

kaB(xl?) . 
such a direct analog of the differential system. Sometimes, 
for example, even the number (9) of dependent functions in 
the differential system and in the discrete system are not the 
same. (The latter will be larger, e.g., when the difference 
equations are derived from high order finite-elements.) On 
the other hand, even when the discrete system is a direct 
analog of (3.111 obtained by replacing each derivative by a 
corresponding difference-quotient, and even if the differentia; 
system is elliptic, it does not follow that the discrete scheme 
is also "elliptic", i.e., the discrete system may be unstable. 
Thus, it is desired that the ellipticity of (3.10) be defined 
independently of the differential scheme it approximates. 

In some cases, however, the discrete system is not 

We will sometimes write (3.10) in the compact form 

Lh - Uh = - Fh , (3.10 ' )  

and Lh is the h 
I gh = (FlI...,Fq) h h where 2 = (U1,.. ., 

L 

q x q matrix k i B  . 
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and the c h a r a c t e r i s t i c  forrn (Or 

by 
h L"(x,h,g) = det !L ( E , $ )  I 

where 6 = (OlI...,8d) I eig = 

- -  0 . u  = elvl + ... + Odvd I 

domain of Fourier components on 
1111 s 'TI I since for integer 1 
coincide-when - -  0 = B'(mod 2n) I 

and 

s y m b o l )  of (3.10) is defined 

( l e (  s 7 )  (3.12) 
i8 iod (e , . . . , e  1 , 

121 = max[lel\ ,,...,leal] . The 
the grid i s  restricted to 
I exp(i8.v) - and exp(ig'.v) 
i.e., when (O.-81)/2n are 

7 1  - -  
integers (j =l,...,d) . Note that - 6 here corresponds to 
h3 of Section 3.1. Indeed J L a B  is consistent with llaB if 

and only if 
- 

LkB(x,hleihg) * LaB(zliE) as h + 0 , 
and the order of approximating L by Lh is p if and only 

We will assume that equations (3.10) are properly scaled, 
i.e., they are divided through by the proper power cf h so 
that, for rl + 0 and fixed E , L (&,n ,n : )  remains 
bounded while Lh(zlnlOE)/n is unbounded. The orc:di' 21n of 
the scheme (3.10) is defined as the highest order of in 
the terms of det(llaB) . That is, 2m is the lowest integer 
for which there exists a permutation (i1,...,i and com- 
ponent 10-1 s 'TI such that 

- h  

h - l  
h 

9 

It is easy to see that if R a B  is consistent with !La$ then 
the order of (3.10) is the same as that of (3.1). 
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The reduced s y m h o l  of (3.10) is defined by 

and the prixcipal s3r,:boZ is defined a s  

L A h  ( E l i )  = L "h (X,O,$)  . (3.14) 

Note that will be the symbol of the discrete approxi- 
mation to the principal part of (3.11, i.e.; the part rep- 
resented in L . Thus, another way of defining the principal 
symbol is as Zsllows: There clearly exist integers S1,...,Sq I 

in &kia is s +ti . that satisfies (3.13), the order of 
Define the principal symbol of the term 2 a B  by 

th 
A 

such thac, for every permutation (i ll...liq) til.. . 
h-l 

a a  

(Note that for some terms the principal symbol may vanish.) 
Then the principal symbol (3.14) is also given by 

2" = det th(xl$) I (3.14b) 

Ah where th = { k a B }  is the q x q principcl characteristic 

matrix. 

3.3 T-Ellipticity 
The concept of ellipticity for difference systems is more 

complicated than for differential ones. 
ween several possible variants of this concept we add prefixal 
letters to the adjective "elliptic". The system (3.10) is 
called T - c l l i p t - i c  at - x if there exists a positive ~ ( ( x )  

such that 

TO distinguish bet- 

(3.15) "h 2m I L  ( ~ ~ 8 )  I 5 KO() 121 . for all / e l  s r . 
This definition corresponds to (3.5a). If Lh is consistent 
wlth an e7liptiz differential operator L then the inequality 
holds automatically for small 181 , and hence (3.15) is 
equivalent to the weaker requirement 

th(x,g) + o for all o < l e 1  - 6 7 , (3.15a) 

which is the analog of (3.5). 
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Thomge (T31 and Thom6e and Westergren [TWI took (3.15a) 
as their definition of ellipticity €or scalar equations 
(q = 1, Lh = kll) . 
however. For example, the scalar operator 

h This requirement by itself is'r.ot enough, 

(3.16) 

has the symbol 
ie2 "h L (SI = -(l-cos 6,) + e  (1-cos e,) . 

which clearly satisfies (3.15a), but Lh is consistent with 
the hyperbolic differential operator a l -  3 ,  (the wave 2 2  

operator). In effect, however, definition (3.15) is used in 
[T3] and [TW]. An earlier version [T2] introduced the concept 
of ellipticity €or symmetric scalar horrrogeneous operators with 
constant coefficients, i.e., for the case q = 1  , 
bllv(E,h) = h 

-2mA A A 

b, , b, = b-, - . In this case if Lh is con- 
- - - 

sistent with any differential operator L then T-ellipticity 
is equivalent to the requirement 

Operators satisfying (3.17) will be called here s y r n r n d t r i c -  
R 1 l i p  t i c .  

Related definitions can be added here: The system (3.10) 
will be called u n i j o r : n l p  ~ " - e l Z i p t . i c  in the domain Q if its 
coefficients are uniformly bounded and there exists a positive 
constant K independent of 5 for which (3.15) holds at a l l  
points 5 E . The largest such constant K is called the 
T-cltipticity c o n s t a n t .  The system (3.10) is called szrvi-2'- 
elliptic of order 2m if 

(3.18) 

where P2m is a non-negative homogeneous polynomial in 9 of 
order 2m . 

Ah I L  (x,S) I 2 for all l e 1  6 T: 

Using Fourier transformation it is easy to see that for 
homogeneous (principal ?art only) Lh with constant coef fi- 
cients , the semi-T-ellipticity (3.18) is equivalent to the 
a priori estimate 

. (3.19) 
h h  h h  

IIP,*(? 1% II L c IIL u I I  
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holding for all grid functions - ch vanishing outside a 
bounded domain. Here C is independent of ch and h , ‘and 

( 3 . 2 0 )  2 9 
IlEhlI = ,I I IUj(i5l I 

3 = 1  5 

the second summation being extended over all points 5 where 
u.(x) is defined. In particular, T-ellipticity is equivalent 
to an a priori estimate of all 2m-order derivatives of in 
terms of the data L g . Such estimates can then be extended 
further, using methods analogous to those used in the differen- 
tial case (estimating lower-order derivatives of gh in terns 
of higher-order derivatives of uh and in terms of 115 1 1  I 

perturbing from the constant-coefficients case to the 
continuous-coefficients case, etc.). For the scalar ( q = 1 )  
case this is done in [TWI. Such methods, however, yield only 
interior estimates, similar to ( 3 . 7 a ) .  Estimates near boun- 
daries, like ( 3 . 7 1 ,  are much harder to get in the discrete 
case, where methods like coordinate transformation (used to 
transform boundaries to hyperplanes) are not applicable. 
Boundary estimates are available only for special classes of 
discrete elliptic problems (see [TS] and (T21) . 

3 -  
- uh 

h h  

h 

3 . 4  Quasi-ellipticity 
In approximating elliptic systems, especially in the non- 

scalar (9’1) case, condition ( 3 . 1 5 )  is often violated only 
near 101 = IT . This happens when central differencing is 
used to approximate odd-order derivatives in the principal 
part (e.g., central-differencing approximation to Cauchy- 
Riemann equations, see Sec. 5 . 2 ) .  Instead of ( 3 . 1 5 ) ,  the 
weaker condition 

2 d 
li3h(xlc) I >, K ( 5 )  ( 1 sin e.lm , for a l l  real 2 , ( 3 . 2 1 )  j=1 3 

is satisfied. Systems for which (3.21) holds will be called 
quasi-T-elliptic. If K is independent of 5 the system is 
uniformZy cuasi-T-elliFtic. 

Using quasi-elliptic approximations, the results should 
be properly interpreted (sometimes they are not). Namely, the 
difference solution is meaningful only after proper averaging. 
Indeed, the operator is unstable for some Fourier components 
exp(iB.x/h) for which = ‘TT and L (2,g) = 0 . A small h 
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perturbation (in F )  in these (or in neighboring) hiyh- 
frequency components may cause very large high-frequency 
changes in the solution (which corresponds to nothing of that 
sort in the differential case). The averaging should l i q u i -  
date all such Fourier coxponents. 0qe such averaging is %he 
operator 

For properly averaged solutions of uniformly quasi-T- 
elliptic operators, stability results and a priori estimates 
can be obtained as for T-elliptic operators. But round-off 
errors may have here much larger effect, and the truncation 
errors will usually correspond to those obtained by T-zlliptic 
operators on a coarser grid. Quasi-T-ell.iptic operators are 
therefore not recommended (but see Sec. 3.11). 

3.5 S-ellipticity 
The notion of T-ellipticity depends too much on vanish- 

ingly small meshsizes. One deficiency, for example, is that 
it allows operator translation. Namely, if Lh is T-elliptic, 
so does also ThXLh , for any fixed 1 . This should certainly 
be avoided at finite mesh-sizes, since it would allow, for 
example, two difference equations at two neighboring points to 
contradict each other ( Th-L U (5 )  = F (5 )  
L U (x+vh) - -  = F (x+xh) when Fh(x) # Fh(s+xh) 1 .  This 

v h h  h contradicting 
h - h h  

situation is avoided in [T3] and [TW] by requiring the coeffi- 
cients b,(x,h) to be continuous in 5 , so that the 

operator cannot have different translations at different points. 
This way of avoiding translations is not fully satisfactory 
since, in principle, we may like to use discontinuous coeffi- 
cients in some problems; there is nothinq basically wrong in 
certain discontinuities. Moreover, in this way translition is 
still allowed, although it is required to be the same trans- 
lation at all points. This is inconvenient in the stucly of 
relaxation schemes, where a mcre definite relation is required 
between the location of an unknown and the location of the 
equation relaxed by it. To avoid translations, the following 
modification of the definition may be used. 
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As - 0 changes continuously from - e o  to - 8'  nod 2.rr), 
"h the principal symbol L (x,g) traverses a closed curve (a 

loop) in the complex plane. The operator (3.10) is said to 
have index 0 if no such closed curve circles the origin 
(i.e., all such loops have index 0 1 .  The operator (3.10) 
is called S - e l l i p t i c  (respectively s e m i - S - e l  L i p t i c ,  :(ndfcrmiLi 

S - e l l i p t i c ,  q u a s i - S - s l l i p t i c )  if it is T-elliptic (respectively 
semi-T-elliptic, uniformly-T-elliptic, quasi-T-elliptic) and 
has index 0 . Note that (3.16) has index 0 , hence vanishing 
index is not enough for ellipticity. Note also that symmetric- 
T-elliptic operators are S-elliptic. 

Every S-elliptic operator is of course T-elliptic. Con- 
versely, e v e r y  T - e l l ? : p t i c  operator c a n  be t r a n s l a t e d  t o  one 
and o n l y  one S - e l l i p t i c  o p e r a t o r .  Indeed, if Lh is T- 

elliptic and if the index of the loop 

{Lh(x,g) i 0 c 0 L IT and B k  is fixed for k # j] 

Lh is S-elliptic. 
j 

1s u j  , it is easy to see that 

3.6 R-ellipticity 
S-elliptic operators are inconvenient in constructing 

numerical approximations to differential equations. The 
following concept will be nore useful. 

The system (3.10) is called* i i - e i l f p t i c  iff 

(3.23) 

Note that if Lh is consistent with an elliptic operator 
L then Lh is R-elliptic iff 

* 
The definition in [BSI is modified here. What we called there 
R-elliptic should more properly be called strongly-R-elliptic, 
since it is related to strongly-elliptic differential systems 
(see [ADNI, page 43). 
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(3.2,; Ah R e  L (5,:) > 0 r for all 0 < 151 c TI . 
The condition (3.261, however, is not enough by itself. For 
example the operator 

h 2 h 2  h 2 h 2  L~ = -all+h ( A  = -;lll+h ( c  a .  3 3  . )  (3.27) 

satisfies (3.261, but is only semi-R-elliptic. 

R-ellipticity clearly entails S-ellipticity and hence 
allows no translation of the operator. O n  the other hand, all 
S-elliptic systems used in practice can easily be made R- 

elliptic by rcultiplying some of the equations by suitable 
constants. Every symmetric-elliptic operator consistent with 
any differential operator is clearly R-elliptic. But R- 
elliptic operators are not. necessarily symmetric. An example 
is the asymmetric operator 

L~ = -all - a  Th,l a22 
which is R-elliptic for 0 < a < 1 . 

(3.28) 

An impormnt advantage of R-ellipticity is its aclditivity 
in the determinant. That is, in constructing the difference 
equations it is enough to construct each one of separate parts 
of det(k:g) to be R-elliptic. In the scalar (q=l) case, in 
particular, the sum of R-elliptic operators is also R-elliptic, 
and hence R-elliptic operators can be constructed term by term. 
(See examples in [BSI, Sec. 5.2, o r  Sec. 3.10 below.) 
In the non-scalar . ( q > l )  case, ellipticity is not additive: 
The sum of e l l i p t i c  opera tors  is n o t  n e c e s s a r i l y  elliptic. 

But we can still exploit the additivity in the determinant. 
(See for example the constructions in Sections 5.2, 6.2, and 
7.'2) . 

There is a Special case 0.f ellipticity, called strong 
ellipticity ([ADNIr p.431, which is additive even in the non- 
scalar case. The system (3.10) is called s ' ro i zg ly  .?-gZLi~tic 
(or strongly elliptic) iE (i) s = t  (see sec. 3.21, 
(ii) (L uIcL and ua are defined on the same grid points, 
and (iii) 

c i z  h 

(3.23) 
for a l l  complex 5 # 0 and real S # 0 r - 
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where . {$:6} 

Scalar' R-elliptic operators art? of course strongly elliptic. 
is the principal characteristic matrix (3 .14a j  . 

It is clear from ( 3 . 2 9 )  that the sum of strongly elliptic 
difference systems is also strongly elliptic. 
strongly-elliptic operators can be constructed term by term. 
On the other hand, important elliptic systems, 
and Navier-Stokes, and Cauchy-Riemann equations, are not 
stron7ly elliptic and thus cannot have strongly elliptic 
difference approximations. 

Hence, 

such as Stokes 

Through Fourier transformation it is easy to see that, 
for homogeneous (principal part only) L~ with constant 
coefficients, strong ellipticity is equivalent to the a priori 
estimate 

holding for all grid function vanishing outside a bounded 
domain R . C is independent of h , uh and fl . For the 
scalar symmetric case, relation (3.30) is derived in [T2], 
leading to convergence theorems. 
derived for general strongly elliptic systems. 

Similar theorems can be 

3.7 V-ellipticity 

geneous boundary conditions, belongs to a normed linear space 
vh , with norm 11 I \  . Suppose also we can defir.e the 

bilinear form 

Suppose the solution Uh of (3.101, with suitable homo- 

- 

( 3 . 3 1 )  

h h  (This is of course possible only if vh j and (L 3 are 
defined on the sane set C2.2 of points 
is called V-elliptic if ah is continuous uniformly in h and 
t.,.-'re exists a positive constant a independent of h such 

5 . )  The system (3.10) 
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Thus, in a suitable norm, strongly elliptic principal- 
homogeneous operators are V-elliptic (see (3.30)). The 
analysis of V-ellipticity is more developed than t5at of other 
ellipticity concepts, especially in finite element formulation 
(see [Cl]). V-elliptic differential problems can be stated as 
variational Troblems. The usual procedure is to base the dis- 
cretization on the variational form in a suitable finite- 
dimensional approximation space, so that the discrete problem 
is automaticall;. V-elliptic and has some relations to the con- 
tinuous problem which are very useful for theoretical analysis. 
On the other hand, V-ellipticity is not general enough, and 
important elliptic systems, like Cauchy-Riemann Stokes and 
Navier-Stokes, are not V-elliptic. The latter two can be 
reformulated as V-elliptic problems (see [Tl]) , but that 
reformulation is not suitable for the fast solution methods 
described below. (The solution process cannot stay in the 
divergence-free space vh , and explicit use of the pressure 
functi.on is needed.) It is often the case that the most 
efficient finite-difference discretization of a V-elliptic 
problem is not quite V-elliptic itself. The construction of 
discrete approximations via the variational form is usually 
much more expensive in computer time and storage than direct 
differencing. Such an expense is tolerable when slow, 
storage-expensive solution processes, like elimination, are 
used. But when fast, storage-economicai algebraic solvers, 
like the multi-grid solvers, are used, the usual finite-element 
assembly processes turn out to be by far the most expensive 
part of the calculations. 

3 . 8  Scaled Ellipticity 

not quite capture the stability properties we nay be interested 
in. The definitions are given in terms of the principal part 
of the difference equations, and are therefore applicable to 
equations with lower-order terms only if the mesh-size h is 
"sufficiently Small". In differential equations, the .principal 
part indeed dominates the local behavior of solutions (whereas 
global behavior on large enough domains may be determined by 
the lower-order terms). In difference equations, by contri 

For various purposes the above ellipticity definitions do 
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unless the mesh-size h is "sufficiently si..a11" , the low$r- 
order terms may dominate even the local behavior, since there 
exist no SOlutiOn Scales smaller than h . Only when h is 
small enough the principal part dominates the local behavior, 
and the above concepts and theory (e.g. , [T3] and [TWI 1 
applies. In many cases, however, those "sufficiently small" 
mesh-sizes are too small to be practical. In particular in 
singular perturbation operators, such as (3:9b), the prin- 
cipal part dominates only when the mesh-sizes h is small 
compcred with the size ( € 1  of the perturbation (which in 
Navier-Stoke equations, for example, is proportional to the 
inverse of the Reynolds number). Furthermore, in such and 
other problems the form of L~ may depend on h : Central 
differencing may be used at sufficiently small h , while 
"upstream" differencing will be employed at larger h . The 
stability properties at h * 0 are then clearly irrelevant 
for studying the schemes at larger values of h . Moreover, 
even at moderate values of E , a theory for "sufficiently 
small" h will not be suitable for cult$-grid schemes, where 
large values of h always participate in the solution 
process. 

Thus, an improved definition of ellipticity for discrete 
equations must include lower-order terms. One way to handle 
this (see [B2], p.13) is to regard small parameters (like E )  

in the difference equations as being functions of h (e.g., 
E = ahs 1 .  In particular, small coefficients a 
differential system (3.1) may be regarded as functions of h ,  
or as scaled by h , namely 

in the 
a 6 1  

Differencing the differential equaticn in this form will 

(3.33) 

change the dependence on h of the coefficients baB"(x,h) 
in (3.10), so we can write them as new functions baBv(slh) . 
This will tten chznge the dependence on h of l12B ans;! Lh 
and the orde: 2m of the system, which will hence be denoted 

Oh 
by 'la6 I 

symbol will be defined by 

0 -  

- 

zh and 2; , respectively. The d c a t e d  phincipat 
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(3.34) 

The system (3.10) will be callec! scaled T-elliptic at 
there exists positive K ( X )  such that 

if 

Employing ih instead of th I we can similarly define scaled 
semi-T-ellipsic, scaled quasi-T-elliptic, ; c o l e d  S-elliptic, 
scaled semi-S-elliptic, scaled quasi-S-elliptic, scaled R -  

ellipt$c, scaled semi-R-elliptic, scaled quasi-R-elliptic, 
scaled s t r o n g l y  elliptic and scaled '/-elliptic operators. 

Uniform ellipticity of all these kinds is similarly defined, 
with "ellipticity constants" K independent of - x . 

As a simple illustration, consider the central- 
differencing approximation to (3.9b) 

L~ = - E c ah + c a.p.a h h  (3.37) j j  1 1 1  
whose syrcbol is n 

(3.38) 

The principal symbol is 

L Ah ( g )  = 4 ~ :  X sin 2 %  (3.39) 

For the scaling E = rlh I the scaled principal operator is 

2 $ + i c a  sine 1 '  j 
Oh L (2) = 417 I: sin (3.40) 

Oh 2 so that Re L ( 8 )  - > (4n/dn 1 , and the operator is scaled 
R-elliptic. For any scaling E = o(h) , however, the symbol 
is 

Oh L (E) = i C a sin 8 
1 '  j 

which can clearly vanish for various 0 < 101 b n . Hence 
( 3 . 3 7 )  is not scaled elliptic for E = o(h) . 

Difference approximations to (3.9b) which are R-elliptic 
.uniformly in E are described below (Section 3.10). 

Scaled ellipticity is very useful in discussing approxi-. 

A thorough ana1ysi.s of scaled T-elliptic 
mations to singular-perturbation operators and their multi- 
grid solutions [BS]. 
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difference approximations to scalar ( q = l )  singular pertur- 
bation problems has been carried out by Frank [ F l I - [ F S ] .  He 
writes the difference equations in terms of the singular- 
perturbatl3n parameter E (properly defined) and uses the 
scaling E = p-lh . 
ticity and coerciveness conditions are both necessary m d  
sufficient for certain a priori estimates to hold uniformly 
in 0 < p < m . 
which guarantees uniform stability o n l y  in an interval 
0 < c1 6 p 6 p 2  < 

d for the infinite domain (Q = F, 1 or for a bounded one- 
dimensional (d=l) domain, (i.e., an interval), but the ellip- 
ticity concept has of course wider applicability. 
however, only to the case where both the perturbed differen- 
tial operator L and the reduced operator (i.e., the lower- 
order operator obtained from L by dropping the higher-order 
perturbation) are elliptic. Unfortunately most singular 
perturbations in fluid dynamics, and even simple problems like 
(3.9b) (for d >1), are not of this kind. 

. .  

Furthermore, he shows [F4] that ellip- 

A l s o  defined is a "weak" ellipticity concept 

. The a priori estimates are only prove? 

It applies, 

3.5 Measures of discrete elliptic*: Stability of high- 
frequencies 

Note in example ( 3 . 3 7 )  with the scaling E = rlh , that 
for any fixed r\ the operator is formally scaled-elliptic, 
no matter how small q is. Indeed, there is no critical- 
value of rl below which the operator starts to be "bad". 
(For rl < no = 7 max( la1 , lbl) the operator is no longer of 
"positive type", but the discretization errors for rl = .9rlo 

are essentially the same as for contrary to a 
common belief. See [F41.) It is clear, however, that for 
rl << max(lal,lb]) the scheme ( 3 . 3 8 )  behaves as badly as a 
non-elliptic scheme. Namely, small high-frequency pertur- 
bations (in L u ) cause unduly large (even though bounded) 

h high-frequency changes in u . Thus, for practical purposes, 
what w3 should really be interested in is not only w;zecher  
Lh is elliptic or not, but mainly how much "elliptic" it is 
at a s p e c i f i c  v a l u o  of h ; i.:., by how much high-frequency 
modes (modes with wavelengths comparab,e to h )  are unduly 
magnified by (Lh)-' . Lower frequency modes are usually 

1 

rl = 1.1 no , 

h h  
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taken oare of by the consistency of 
operator L. Indeed, some such modes may necessarily be 
unstable, since they approximate unstdble modes of L .  
(Unstable modes exist in indefinite operators L ,  such as 
(3.9d) with large enough w . )  

Lh with an Clliptic 

Thus, in some adalog to (3.81, we can defire the hT-  

e t l i p t i c i t y  measure of  L~ at - x as 

where ]SI = maxle.] . We choose the normalization 
C = 2d/(l-cosp1~) , so that for the five-point Laplace 
operator we get E! = 1 . The choice of p is somewhat arbi- 
trary. For multi-grid purposes a natural p is the mesh-size 
ratio hk/lik-l ., because the Fourier components exp ( ii-x/hk) 
in the high-frequency range (hk/hk-l)IT E c IT are exactly 
those modes on grid hk which are not "visible" (i.e. I they 
alias with lcwer modes) on the coarser grid hk- l  . Hence we 
will take hereinafter 

3 

1 P = ~ ,  c = 2 a .  

The hT-ellipticity measure of Lh in a domain Qh is 
defined as 

(3.4333) 

(3.44) 

Various other, equivalent measures €or the local 
(scale h )  ellipticity could  be similarly introduced. For 

R-elliptic operators 
ellipticity measQre  

Lh , a useful measure will be the k.?- 

(3.45) 

The precise value of Eh 
order of magnitude is a very significant property of 
will say that the difference system Lh has good h-ellipticity 
if Eh(Lh,x) &re not small (compared with 1 ) . It implies 
stability of the high-frequency modes. 

is of course not important, but its 
Lh . We 
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I .  

I 

The h-ellipticity measures are defined for a specific 
mesh-size, the very mesh-size chosen for the actual con- 
putations. It should he emphasized that Eh(Lh) > 0 does not 

, imply ,elli?ticity of Lh . In fact, Lh may be consistent 
with a non-elliptic differential operator and still have a 
good h-ellipticity measure. 
oeprator (3.16). Conversely, some elliptic operators will 
necessarily have bad h-ellipticity measures for some (large 
enough) values of h . An example is any difference approxi- 
mation to (3.9d) for mesh-sizes h = O(u-') . Indeed, at 
such values of h , usual difference equations cannot produce 
good approximations to (3.9d), since the grid does not resolve 
the natural oscillations of the continuous solution ('whose 
wavelength is 2 r / w  ) .  

all values of h should give no trouble is when Lh approxi- 
mates a degenerate e l l i p t i c  d i f f e r e n t i a l  operator L , such 
as (3.9a), which itself has a small ellipticity measure 
E(L,x) = E . The usual O ( h 2 )  approximation to (3.9a), 

An example is the hyperbolic 
'~. 

The one case in which small h-ellipticity measures for 

(3.46) h h  h 
L~ = - E a l l  - - . .. - add ' 

indeed has It is of course possible to 
construct O(h2) approximations to (3.9a) which have good 
h-ellipticity. For example, 

Eh(Lh,x) = O ( E )  . 

h h 
add ' 

- a 2 2  - ... - (3.47) 

But (3.46) is not necessarily worse than (3.47), since its 
high-frequency instability reflects a similar behavior of the 
differential operator. ( A  nice nulti-grid possibility is to 
use ( 3 . 4 7 )  in relaxation (if pointwise relaxation is desired) 
and (3.46) in the residual transfers. See Sec. 3.11.) 

In fact, all we need from Lh is that its h-ellipticity 
measure be good in the same sense in which the measure of L 
is good. For degenerate operators this means good semt-h- 
ellipticit5 m e a s k r e s .  The stmi-hR-ellipticity measures, for 
example, are defined by 
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where CP is a suitable subspace. In case of approximating 
(3.9a), f o r  example, 0 should be the subspace ! e , = O j  , 
since it is the largest0 yielding 

. .  

3.10 Construction of elliptic difference Systems 
The two main considerations in selecting difference 

approximations to a given differential operator are accuracy 
and stability. Accuracy reflects the quality of the approxi- 
mation for smooth components, i.e., for Fourier components 
exp(i z - 5 )  with a h-l . Its most significant measure is 
the order of approximation p (see (3.12a)). On the other 
end of the spectrum, Fourier components with lil > n/h are 
not visible on the grid and are not approximated at all. Even 
the highest frequencies that a r e  visible cannot have a good 
approximation, and there is no point in trying too hard to 
approximate them, since slightly higher frequencies are not 
approximated anyway. A l l  we need in the high frequency raqge 
(n/(2h) $ : n/h , say) is that the di.fference solutions 
cannot be much larger than the differential ones. For this 
all we need is the high-frequency stability of the difference 
operator, discussed above (Sec. 3.9). 

To construct p-order approximations to (3.1l1 one can 
where h 

l 1  

simply approximate each L a 3  ( 5 r a )  by ' l u 8 = Z a E  ( x i 2  
is any p-order approximation to 3 .  not necessarily 

the same at all occurrences. Host such apprcximations w i l l  

not be stable. So the problem at hand is Acc ; 3  C ~ E S ~ P L ~ C S  

s u c h  p-order a p p r o x i m a t i o n s  w h i c h  w i l l   ha;^^ a l s o  g o o d  h -  

e l l i p t i c i t y  m c a s u r z s  (although unstable approximations can be 
used in multi-grid processes; cf. Sec. 3.11). 

3.10.1. Central. approximations of order p =  2 are widely used. 
For general even p , ,  the simplest (i.e., cor,taining minimal 
number of points) p-order central approximations to the first 
derivative a, and the second derivative - 3  are given by 

j j  
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or 

and 

(3.19) 

(3.50) 

(3.51) 

1 1 -1 

are defined in Sec. 3.2. The 

where A. = Bo = 1 , Ak = ( l - - ) A  2k k-1 I Bk= ( l + = )  B k - l  
h a . .  and h and aj , a .  

3 3 3  
first missing term in each summation, evaluated at sone inter- 
mediate point, gives the local truncation error (see [BSl). 
Note that (3.49) is centered at half-way between grid lines, 
while (3 .50 )  and (3.51) are centered on grid lines. Odd-order 
central approximations do not exist; the simplest formulae 
always yield the next (higher) even order. 

h C The symbols corresponding to haj , h a j  , -h2ah 
- 1 s h  are, respectively, 2i sin(0./2) , i sin e 

4 sin ( 0 . / 2 )  and sin ( 0 . / 2 )  . Hence it is clear that the 

symbol corresponding to aip] 
0 .  + O(Bp+l) 
0 < l e j [  

and 
11 

1 ’  4 11 3 -  
2 2 

3 3 
where hf’ = 1 ’  j 

is is1 
is real and does not vanish in the relevant range 

3 j 
71 . Suppose we can use the difference scheme 

“0 h -  - & , , ( X , a  [PI) I (a ,B = 1,. . . , q )  . (3.52) 

The discrete symbol ih(x,h,e) will then coincide with t h e  

differential symbol L ( ~ , 3 3 )  , where = ’  vanishes if arid 
only if. 0 does. Hence (3.52) preserves all the ellipticity 
properties of the differential system. Moreover, every 
degeneracy in Lh will reflect a similar degeneracy in L . 
For k-order derivatives ( a .  ) the approximation (3.52) uses 

3 
k(p-l)+l grid points, whereas the most compact p-order 
approximation needs k-tp-l points. Hence, f0.r k > 1 , (3.52) 
is most compact only for p = 2  . It can usually be replaced 
by the most compact operator, without destroying the ellip- 
ticity properties. Indeed, the most compact approximation to 
(ajIk is obtained from (aiP1)k by dropping all differences 
of order higher than k+p-2 . It is clear from (3.49) that 

5 

-1 
j 
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all the terms droppei have in the symbol the same sign as the 
remaining tkrms. 

The main trouble with ( 3 . 5 2 )  is that it cannot always be 
used. For homogeneous (principal term only; operators without 
mixe-l terms, the grids can often be "staggered" so that ( 3 . 5 2 )  
is applicable (see examples in Secs. 5 . 2  and 6.2). Consider, 
however, the approximation of the scalar operator -~a..+aa 
The approximation ( 3 . 5 2 )  to the first term is centered at grid 
lines, while for the second term the centering is half-way 
bctween grid lines, which is a contradiction. The central 
approximation of this operator, and of (3.9b) and similar 
operators, must employ (3.50) together with (3.51). The 
trouble here is that for large values of ah/€ this operator 
does not have good h-ellipticity measures: L (x,h,n) * 0 as 
ah/E + . Thus, as long as the terms using (3.51) outweigh 
those of ( 3 . 5 0 1 ,  the operator is stable. But the stability 
practically disappears (for e = n )  for large ah/€ . 
--- 3 . 1 0 . 2 .  Upstream differencing. Consider a general scalar 
( q = 1 )  differential operator L. A convenient way of con- 
structing p-order R-elliptic approximations Lh to L , with 
good hR-ellipticity measures, is to construct separately a p- 
order Semi-R-elliptic approximation,with good semi-hR- 
ellipticity measures, to each term in L (except of course for 
those rniscd-derivative terms which canpot have R-elliptic 
approximations. If such derivatives are' present, however, 
there must also be present non-mixed derivatives of the sane 
order to make  up for it). Assume the d i f f e r e n c e  e q u a t i o n s  

are centered at grid p o i n t s .  Then the simplest p-order  cen- 
tral approximations, such as ( 3 . 5 0 )  and ( 3 . 5 1 ) ,  are semi-R- 
elliptic, and would'give R-elliptic Lh whenever L is ellip- 
tic. The h-ellipticity measure may, however, be bad (like in 
( 3 . 3 7 )  , for large Indeed, the simplest central 
p-order approximations to any even (non-mixed) derivative, such 
as (3.511, all have good semi-hR-ellipticity rr.aasure. But the 
.corresponding approximations to the odd derivatives, such as 

( 3 . 5 0 ) ,  have measure 0 . (Good semi-hT-ellipticity measure 
would not help, since 1: is not additive.) 

11 j ' 

'h 

j 

h Zlaj I / E )  . 
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Good hR-ellipticj.ty measures for approximations of odd 
derivatives can be obtained by adding to the central approxi- 
mation a dissipative term Of high enough order and suitable 
magnitude. For exanple, p-order approximation to the first 
derivative is obtained by adding to (3.50) any o ( 1 )  positive 
multiple of either h-l ( - a h  1 '/* or aB ( - d h .  or 

- a . ( - d .  . I  . All these terms have good hR-ellipticity 
measures. The first of them uses the same grid points used by 
(3.501, but reduce the order of approximation by 1 .  The 
latter two retain the approximation order p .  T h e  choice of 
the positive multiple, and the choice between a B  and - a j  , 
can be based on the desire to have most compact formula, i.e. , 
to have p-order approximations to a j  based on p+l grid- 
points. 
turn out to be 

3 1  3 3 3  

3 3 3  

F 
j 

With such choices the p-order approximations then 

( 3 . 5 3 )  

for odd p , u = hac 1 6 h .  s for even p 

. (This sign should of course be taken from the R-elliptic 

j j j 31 j where CI .  = s 

and s is the sign of the coefficient of the approximated 

form of the differential equation, e.g., the form in which 
a terms have negative coefficients). It is easy to see 
that s .  a ( p )  " 
measure. 

3 

j 
a j  

j j  
is 2-elliptic and has good semi-hR-ellipticity 

1 1  

For p = 1 and p = 2 the operators ( 3 . 5 3 )  are completely 
one-sided, e . g . ,  using backward differencing when the coeffi- 
cient o€ a j  is positive. Since in applications that coeffi- 
cient usually represents the j-component of some velocity, 
such differencing is called upstream (or " u p w i n d " )  differ- 
encing. (Hence the superscript U in ( 3 . 5 3 )  . )  Xote, 
however, that fo; p > 2 the operators are not one-sided; 
some downstream grid-points are also used. 
order operators based on p+l grid-points are not R-elliptic 
(for p >  2): their use would produce unstable ccmputations. 

The one-sided p- 
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3.10.3. Artificial viscosity. Instead of upstream differ- 
encing, one can use central differencing and just add a gene- 
ral dissipative term, of suitable order and maqnitude, not 
attached to any particular differential term. The simplest 
such term is either C(h)C. (-6h.)p' or C(h) ( - C . 6 .  . )  , 
where C(h) > 0 is comparable in magnitude to the coeffi- 
cients of the central difference operator, and p' is just 
high enough to maintain the desired approximation order. This 
procedure i: often simpler than upstream differencing since 
here the difference formula does not depend on the signs of 
various coefficients. A l s o ,  the h-ellipticity measure is in 
this way guaranteed to be good, while in upstream differencing 
it may have degeneracies. For example, in upstream approxi- 
mation to (3.9b) , degeneracy occurs when some a are much 
smaller than others. In fact, the artificial viscosity is 
exactly equivalent to upstream differencing in case the grid 
directions happen to be such that all a are equal. 

h P' 
3 3 3  3 3 3  

j 

j 
. The artificial viscosity (whether explicit or through 

upstream differencing) makes it possible to treat singular 
perturbation problems even when the reduced problem is not 
elliptic (e.g. , (3.9b) for large h Z la . ' / / E  , or Navier Stokes 
equations for large Rhlg() , in contrast to the cases treated 
in [F41-[F6]. Such problems usually have thin transition 
layers, like boundary layers, turning point, shocks, etc. The 
introduction of artificial viscosity causes these layers to be 
smeared over several mesh-sizes (and hence resolvable by the 
grid). Multi-level a d a p t i v e  techniques would use finer levels 
around such l ayers ,  thus making them as thin as needed (see 
(B51). In this way the total artificial viscosity added to 
the systen can be made small, since away from such layers the 
solution U is smooth and the artificial viscosity terns are 
therefore small (their magnitude being 0 (hp) relative to other 
terms). 

3.10.4. Divergence forms. Thc differential equations often in- 
clude terms like - a .  (a3.1 . This form i s  called divergence 
form or conservative form, since it usually results from phy- 
sical conservation laws. It is best to discretize the term 
directly in this form (rather than in the form - a > .  -(>,a) 3 . I ,  
because that will produce difference schemes with conservation 

3 

3 3  

11 3 
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properties Similar to the differential schemes and hence with . 

guaranteed convergence (see [LW] ) . ~ l s o  (for elliptic 
systems) the divergence-form discretization can conveniently 
be made in terms of central differencing only. Indeed, using 
( 3 . 4 9 )  for any even p we have the compact p-order central 
approximation to -a.(aa.) 

. .  . .  

3 3  

(3.54) 

where denotes the removal of all terms of order higher 
than O(hP) resulting from the product. (3.51) is the 
s2ecial case a 2 1  . For p = 2  (3.54) is the familiar oper- 
ator -2.caa.l . For p = 4  , 

[ I F  

h h  
3 3  

(3.55) 

In the sense of [LW], (3.54) is always conservative, since 
ah is a common left-factor in all its terms. Also, (3.54) 
has a good semi-hR-ellipticity measure (in the sense of (3.481, 
where 

j 

Q = { e i = O  for ifj} , and for smooth a 1.  

At points away from the boundary, the less compact for- 
may actually be simpler and more efficient mula -a[p1 (aa;?]) 

to evaluate than (3.54). This formula is of course also con- 
servative and with good semi-hR-ellipticity measure. 

3.10.5. High order approximations near boundaries. The 
various formulae above, in particular the higher-order (i.e., 
P > 2  if central, p > 1 otherwise) or the non-compact ones, 
are often inapplicable near boundaries, where not enough 
neighboring grid points are available. We need then to 
replace some points in the difference operator by others, 
maintaining the same approximation order. This can generally 
be done by adding O(hp) terms to the operator. Terms which 
are semi-R-elliptic are preferable, where possible, but they 
do not seem to be necessary. Generally, the theoreticaJ. 
requirements near boundaries are far less clear, and require 
further investigation. 

j 

Another possibility is to use lower-order approximations 
near boundaries, using a finer grid there to make up for the 
lower accuracy. The multi-level adaptive technique [BS] will 
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do it automgtically when the restriction on the approximation. 
order is imposed. For certain error norms, lower-order 
operators near boundaries can be used without grid refinement 
and without spoiling the global order of approximation (cf. 

[BHI). 
order elliptic and high-order non-elliptic approximations, a s  

in Sec. 3.11. 

3.10.6. Non-scalar systems. The construction of p-order R- 
elliptic approximations with good hR-ellipticity measure to 
non-scalar (q>1) operators can again be done term by term, 
except that the terms now are those in L (the determinant 
of the matrix operator). See exanple in Sec. 5.2. When L 

The best possibility may be the combined use of low- 

- 
- 

is a product of elliptic operators, one can construct 
separately approximations to terms of each of these operators. 
See examples in Sec. € . 2  and 7 . 2 .  

3.11 Multi-level differencix 

the effective separation between the treatment of high- 
frequency modes (modes with =JT G 6 TI , affected only by 
relaxation) and low-frequency ones (affected mainly by the 
coarse-grid corrections; the lower the mode, the less its 
amplitude is changed by a relaxation sweep). This feature can 
be exploited in various ways. For example, the conflict bet- 
ween using more accurate central differencing or the corres- 
ponding, less accurate but more stable, upstream differencing 
has a simple multi-level resolution. Upstream differencing 
is much bctter for the highest frequencies and should there- 
fore be used i n  relaxation. The central differencing is 
better for lower modes (the lower the mode, the better it is) 

k+l hence it should be used in the residuals transfer (i.e., L 
of (2.131, when k+l= a ) .  

An important feature of the multi-level fast solvers is 

1 

This procedure will ensure stability (and hence also 
efficient smoothing; see Sec. 4 . 2 )  together wit.h the higher- 
order accuracy of central differencing. Note that such a 
multi-level process will not converge to zero residuals, since 
it uses two conflicting difference schemes. The very point 
is, indeed, that the solution produced is a better approxi- 
mation to the d i f f e r e n t i a l  solution than can be produced by 

-45- 



either scheme. . .  
Generally, the global approximation order p of the 

multi-level scheme will be determined by the order of the 
differencc operator used in the residuals transfer. This 
operator need not be stable. It is only in relaxation that a 
stable operator (i.e., with good hR-ellipticity measure) 
should be employed, and this operator can be of lower approxi- 
mation order. 

Observe that the lower order operator can be used on the 
c o a r s e r  grids both for relaxation and for residuals transfers, 

Lk+l since those grids act only as correction grids. Thus 
in (2.10) should be of the higher order only for k+l = il . 

The T-extrapolation technique (Sec. 2 . 4 )  can, in fact, 
be regarded as a special case of this procedure. There, the 
higher-order operator of the residuals transfer is in effect 
constructed as a combination of lower-order operators on two 
levels, which is simpler to program. 

4 .  LOCAL MODE ANALYSIS OF MULTI-LEVEL PROCESSES 
An important feature of multi-grid.solvers is that their 

computational work can fully be predicted by local mode 
(Fourier) ar.alysis. This is an analysis applied to general 
nonlinear problems in the following way: The difference 
equations are linearized around some approximate solution, and 
the coefficients of the linearized equations are frozen at 
local values. (Or, more generally, the coefficients may assume 
some typical mode of oscillation. See Sec. 4.7.1.) The 
resulting constant-coafficient (or single-mode-coefficients) 
prcblem is then assumed to hold in a grid covering the entire 
space, and its convergence properties under various processes 
can be studied in terms of the Fourier components of the 
error. This local analysis is a very good a2proximation to 
the true behavior of modes with short wavelengths, which 
interact at short distances End are therefore r.ot influenced 
by distant boundaries and slow changes of coefficients. It 
is inaccurate for long modes, but those may be ignored in the 
multi-grid work estimates, sini'e long-modes convergence is 
obtained on coarser grids, where the computational work is 
negligible. 
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Indeed, the predictions of this analysis turns out to ‘le . .  
very precise, so much so that they can be used in developing 
the programs (see Sec. 6.5 for example). As long as the 
cycling algorithm (see Sec. 2.6 ) does not attain the conver- 
gence factor P (see Secs. 4.4 and 4.61, it must contain a 
programming bug or a conceptual error. Such errors are very 
common with inexperienced multi-gridders, especially in their 
treatment of boundary conditions, hence it is recommended that 
codes be gradually developed, starting from simplest cases and 
insisting at each stage on attaining the theoretical conver- 
gence factor. 

0 

The local mode snalysis should of course be supplemented 
by some other considerations. These are discussed in Sec.4.3. 

4.1 Smoothing factors 
The simplest (and most useful) application of the local 

mode analysis is to compute the error-smoothing power of a 
given relaxation scheme. We assume that the relaxation is 
consistextly o r d e i - e d .  This means that its sweeps consist of 
passes in each of which the order of two points 5 and y 
(whether ,x is relaxed before, after ol: simultaneously with 
y) depends only on E-y . - 

There are many types of relaxation,especially for non- 
scalar systems. The simplest one can be called strongly 
pointwise Gauss-Seidel relaxation. In it, to each finite 
difference equation there corresponds one and only one dis- 
crete  unknown. The r e l a x a t i o n  scan t h e  equations by some 

order. Each equation in its turn is satisfied by changing the 
value of the corresponding unknown. This relaxation is always 
convergent if and only if the discrete system of equations is 
positive definite (upon assigning a proper sign to each 
equation). Hence this type of relaxation is natural for V- 

elliptic systems, or for strongly elliptic systems (with 
sufficiently small mesh-sizes, in case non-principal terms 
are present). 

For elliptic systems which are not strongly elliptic 
there is no natural one-&-one correspondence between 
equations and unknowns. ( T h i s  is already true in the 
differential system. See Sec. 5.3,for example.) More natural 
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t h e n  i s  wha t  w e  c a l l  p o i n t w i s e  Coliective Gauss-Seidel ICGSI 
r e l a x a t i o n .  For t h i s  t y p e  o f  r e i a x a t i o n  i t  i s  assumed t h a t  
t h e  g r i d  i s  n o t  s t a g g e r e d .  The q unknown f u n c t i o n s  and t h e  q 

d i f f e r e n t i a l  e q u a t i o n s  a re  a l l  d e f i n e d  on t h e  same g r i d - p o i n t s  
so t h a t  a t  eqch  p o i n t  
are  c e n t e r e d .  The r e l a x a t i o n  sweep c o n s i s t s  o f  s c a n n i n g  t h e s e  
g r i d  p o i n t s  i n  some o r d e r .  
s y s t e m  of 
t a n e o u s l y  c h a n g i n q  t h e  q unknowns. A s l i g h t l y  more g e n e r a l  
method of r e l a x a t i o r ,  c a l l e d  p o i n t w i s e  C o l l e c t i v e  S u c c e s s i v e  
O v e r - R e l a x a t i o n  ( C S O R ) ,  i s  t o  change  a t  e a c h  p o i n t  t h e  q 
unknowns by c h a n g e s  e q u a l  t o  t h e  CGS c h a n g e s  m u l t i p l i e d  by 
some " r e l a x a t i o n  p a r a m e t e r "  W .  (More g e n e r a l l y ,  u may be 

a q x q  m a t r i x . )  Deno t ing  by and  g t h e  a p p r o x i m a t e  
s o l u t i o n  b e f o r e  and  a f t e r  s u c h  a r e l a x a t i o n  sweep, res- 
p e c t i v e l y ,  we g e t  t h e  r e l a t i o n  

q unknowns and q d i f f e r e n c e  e q u a t i o n s  

A t  e a c h  p o i n t  i n  i t s  t u r n  t h e  

q d i f f e r e n c e  e q u a t i o n s  i s  s a t i s f i e d  by s imul -  

- 

= E h ( E )  I (4.11 

i s  t h e  q x q  m a t r i x  baBv (see (3.10)) , N+ i s  
BV- - where 

t h e  se t  o f  ne ighborhood  i n d i c e s  g s u c h  t h a t  (g+v_h) i s  
scanned  before t h e  p o i n t  5 and hence  new val.ue 2 are  
a l r e a d y  u s e d  a t  t h o s e  p o i n t s ,  and  N i s  t h e  complementary 
set  of i n d i c e s  s u c h  t h a t  ( x + l h )  i s  s c a n n e d  a f t e r  :< . 
Deno t ing  by y = - 3  and 2 = - 2  t h e  e r r o r ' b e f o r e  and 

a f t e r  t h e  sweep,  r e s p e c t i v e l y ,  w e  g e t  f rom (4.1) and (3.10) 

- 
- 

h h -  

= 0 .  ( 4 . 2 )  1 1 + B o [  (1 - c)v(x) + - w E(:) ] 

I n  t h e  loca l  mode a n a l y s i s  w e  assume 
e n t i r e  s p a c e ,  and  h e n c e  i t  c a n  b e  2xpandad i n  che d i s c r e t e  

y t o  be d e f i n e d  i n  t h e  
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It is also assumed in this analysis that are independent 
of 5 and hence, upon substittiting ( 4 . 3 )  and ( 4 . 4 )  in ( 4 . 2 ) ,  

3v . .  

( 4 . 5 )  
1 1 B- + Bo(l-;) + [B + - B O ] R  = 0 , + 2 

wheri; R = R ( 8 )  is the relaxation amplification matrix, i.e., 

; ( e )  - -  = R ( g )  ; ( e )  , and 
- 

The relaxation amplification factor p ( 0 )  is the eigenvalueof 
R ( 4 )  with the largest magnikude. The smoothin_o factor 
is defined as the worst (largest) magnitude of amplification 
factors of high-frequency components: 

- 

- 
P =  ( 4 . 6 )  

The smoothing rate is log(l/i) . 
In other types of relaxation, calculating the smoothinq 

factors may be more complicated, since in addition to u and 
u there may be several intermediate values of the approxi- 
mate solution (see for example Secs. 5.3 and 6.3 below). There 
will then be several equations like ( 4 . 5 1 ,  instead of just 
one, from which R should be eliminated, or the amplification 
factor p ( g )  should be computed for any desired g . A 

general computer routine, called SMORATE, has been developed 
for this purpose. The user inputs the details of the 
relaxation scheme, znd the routine outputs the smoothing fac-  
tor p , a map of the amplification factors / p ( e ) I  , as 
well as various other related information, including certain 
estimates of the convergence factors (see Secs. 4 . 4  and 4 . 5 ) .  

- 

- 

4 . 2  Construction of Relaxation Schemes 
With the SMORATE routine we can evaltcato and o p t i r r i z e  

relaxation schemes over some range of possibilities. On the 
other hand, it does not prov'.de us with a genezal method of 
constructing good schemes. For non-scalar problems the con- 
struction is not trivial at all. Although CSOR usually pro- 
vides smoothing factors bounded away from 1 (i.e., ; < 1 
and p does not tend to 1 as h * 0 1 ,  more "natural" 
schemes may provide much better factors (see Secs. 5 . 3 ,  6.3, 

- 
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7 . 3 .  Note there that for such schemes it may be easier to 
- h calculate p in terms of the residual function L V rather ' 

than in terms of the error function V .  Both of cocrse yield 
the same amplification matrix R ) .  

The construction of good relaxation schemes, like the 
construction of good finite difference equations, depenis on 
some physical intuition and expertise that can be derived. 
from considering the simplest cases. See Sec. 3 . 2  in [ B 2 ] ,  

Sec. 3 . 3  in I B 3 1 ,  Sec. 6 in [BS], and Secs. 5 . 3 ,  6.3 and 7 . 3  

below. Here we emphasize some general considerations, 
relating smoothing ta the h-ellipticity measures. 

A n c c d s s d r y  condition that pointwise relaxatdo??. schenic2s 

f o r  the diffzrenca system Lh can be devised w i t h  ~ O O C  

smoothing factors is that Lh has a good hT-eiiipticity 
measure ET(L ) . Indeed, if for some mode fi the value of h 'h 

Iih(h,c) I 
then the error V ( x )  = A exp(i l-g/h) has small residuals 
(compared with the residuals of other errors with the same 
amplitude A ) ,  and can therefore have only small (compared 
with A ) corrections, no matter what relaxation scheme is 
ttsed (as long as it is a pointwise scheme, where the correc- 
tion is determined only by the local residuals). This i s  in 
fact the reason why relaxation is not efficient for small 
- 8 (smooth error components), where Lh(h,g) = O ( 1 )  , com- 
pared with ih = O(h-2m) for some high-frequencies. Small 
hT-elljpticity measure means that ILh(h,a) I is srcall for 
some high-frequency g , hence the error mode 2 is little 
affected by any pointwise relaxation, hence I > ( g )  I is close 
to 1 ,  'hence p is close to 1 . 

i.s small (compared to its values f o r  o t h e r  modes), 

- 

The above necessary condition may also be sufficient (in 
the context of constant-coefficient equations discussed here). 
As an indication, consider the CSOR scheme mentioned above. 
Writing u ( e )  = l - G ( e ) w  , it follows from ( 4 . 5 )  that 

det{B - Bo - w B+} = 0 , ( 4 . 7 )  
h where B = B, + B - + B o  is the characteristic matrix .t ( e )  

(cf. Sec. 3 . 2 ) .  Hence p = 1-Xu + O ( w  , where X is a 
root of the equation 

2 
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det(B- ABo) = 0 . (4.8) 

Thus, for sufficiently small w , 1 ~ 1  is smaller than 1 
(and bounded away from i as h + 0) iff Re X > 0 (ar.d 
Re X is bounded from 0 ) for all roots X of (4.8). In the 
scalar case this means that, for sufficiently small w ar?d 
all sufficiently small h , I u ( S ) l  is bounded away from 1, 
for all 121 bounded away from 0 , if and only if Idh is 
R-elliptic (cf. [B2]). For any f i ’ i z ed  h , E c 1 for suffi- 
ci.ently small w if and only if ER(L ) > 0 ; and, moreover, 
l a r g e  v a l u e s  of ER(L ) imp ly  l a r g e  v a l u e s  of X , where 

h h  
h h  - 

2 - 
)l = l - X w + O ( w  ) . 

h h  In case the h-ellipticity measure ET(L ) is small, so 
that no pointwise relaxation would have good smoothing rates, 
one can still use b l o c k  r e l a x a t i o n ,  such as line relaxation, 
or (if d 2 3 )  plane relaxation, etc. Generally, if @ is 
some subspace, then a @-relaxation is any relaxation where, 
simultaneously with 5 , we relax all the points y such 
that y - 5  E 0 . For example, @-CGS is a relaxation where 
all the q equations at all the points y such that 

y-5 E Q 
unknowns corresponding to these points. 9-CSOR i.s similar, 
with changes which are the QI-CGS changes multiplied by the 
relaxation parameter w . For this type of relaxation it is 

h h  not necessary to have good ET(L , but it is necessary to 
have good semi-h-ellipticity measure ET(L , 3 )  (see (3.48)). 

B l o c k  relaxation will thus be used f o r  degenerate e l l i p -  

are satisfied simultaneously by changing all the 

h h 

tic difference operators like (3.46). For (3.47) we can use 
pointwise relaxation, despite the degeneracy of the differen- 
tial operator. Generally, the degeneracy that require block 
relaxation is such that the system of difference equations 
can be decomposed into blocks of equations with only weak ‘ 

inter-block couplings. These are the blocks that should be 
taken simultaneously in the block relaxatiGn. For example, 
in (3.46) the blocks are the unknowns corresponding to the 
hyperplanes {xl = const.) , which become decoupled E +  0. 
Hence pointwise relaxation would not smooth the error: High- 
frequency functions of x1 will not be affected by relaxation. 
They will, however, be efficiently reduced by the hyperplane 
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relaxation. Another example of such degeneracy occurs in 
(upstream) approximations to (3.9b) , when some of the a. are 

3 
much smaller than others. A similar situation arises in 
Navier Stokes equations with large Reynolds number when the 
velocity direction approximately coincides with a grid-line or 
a grid plane. 

Another alternative in treating such degeneracies is to 
still use pointwise relaxation but to employ as the multi-grid 
coarser level a grid which is c o a r s e r  or,Ly in t h e  d t r e c t i o x s  

of smooth i , ig ,  i.e., ~ n l y  inside the blocks (only in the 
x2'...'xd directions, in the above example). 

A similar approach (a multi-grid remedy for certain 
inefficiencies in relaxation) can also be taken in solving 
quasi-elliptic equations (Sec. 3.4). Relaxation there is 
inefficient €or the unstable error components FJ TI with 
small Lh(i) 1 .  T h e s e  components are suitably averaged out 
by (3.22). So the multi-grid remedy for the inefficient 
smoothing is to use (3.22) in transferring the residuals to 
the coarse grid. As a result, the multi-grid process will 
have fast convergence for the a v e r a g e d  solution, which is the 
only meaningful solution. 

4 . 3  Supplementary considerations 

local mode analysis should be taken into account., Most impor- 
tant is to realize that the error smoothing process in 
relaxation does not continue indefinitely. Except for some 

ideal cases, a certain level of high-frequency errors is 
always coupled to the smooth errors. Starting from a corn- 

pletely smooth error function, a certain level of high- 
frequency error modes is generated by the relaxation sweeps 

because of interaction with boundaries and variations in the 
coefficients of the finite-difference equations. This level 
of c o u p l c d  nonsmootkness will persist as relaxation slows 
down. Further relaxation sweeps will be wastefd. Moreover, 
if the er'ror is smoother than this level, relaxation may even 
magnify the high-frequency error-, Lnstead of reducing them, 
and it is best to avoid relaxing altogether (cf. analysis in 
Sec. A . 2  of [B31). 

Some discrepancies between real computations and the 
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The p r a c t i c a l  r u l e ,  a t  any  r a t e ,  i s  al:*ays t h e  same. 
C o n t i n u e  r e l a x a t i o n  as l o n g  as it  e x h i b i t s  f a s t  conve rgence  
ra te .  When it s l o w s  down, s w i t c h  t o  c o a r s e  g r i d s  -- t h e  e r r o r  

i s  always s u f f i c i e n t l y  smoot.. f o r  t h a t  p u r p o s e .  I n  case of 

h i g h l y - o s c i l l a t o r y  c o e f f i c i e n t s ,  t h e  r e s i d u a l  f u n c t i o n  i s  n o t  

smooth ,  however ,  and should be t r a n s f e r r e d  t o  t h e  c o a r s e  g r i d  
by f u l l  w e i g h t i n g .  

Ano the r  c o n s i d e r a t i o n  t o  supp lemen t  t h e  l o c a l  mode a n a l y -  
s i s  i s  t h e  r e l a x a t i o n  of boundary c o n d i t i o n s .  T h e s e  s h o u l d  
n o t  L e  s c r a m b l e d  t o g e t h e r  w i t h  t h e  i n t e r i o r  e q u a t i o n s  -- 
their smooth ing  i s  a s e p a r a t e  p r o c e s s ,  and  t h e r e  i s  no way of 

t r a n s f e r r i n g  t o  c o a r s e r  l e v e l  t h e  r e s i d u a l  o f  a n  e q u a t i o n  
wh ich  i s  a c o m b i n a t i o n  o f  i n t e r i o r  and boundary  d i f f e r e n c e  
e q u a t i o n s .  A l s o ,  care s h o u l d  be t a k e n  t h a t  t h e  boundary  
r e l a x a t i o n  d o e s  n o t  d i s t u r b  t o o  much t h e  i n t e r i o r  smoothness .  
F o r  example ,  i f  a second-o rde r  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n  
w i t h  Neumann boundary  c o n d i t i o n s  i s  g i v e n ,  w i t h  some smooth 
i n i t i a l  e r r o r ,  and  i f  w e  change  t h e  s o l u t i o n  n e a r  b o u n d a r i e s  
so as  to  s a t i s f y  t h e  Neumann c o n d i t i o n s ,  t h e n  w e  i n t r o d u c e  
i n t e r i o r  r e s i d u a l s  n e a r  t h e  boundary  which a re  much l a r g e r  
t h a n  ( i n  f a c t ,  
G e n e r a l l y ,  impos ing  n o n - D i r i c h l e t  boundary  c o n d i t i o n s  w i l l  
s i m i l a r l y  s e r i o u s l y  i m p a i r  t h e  i n t e r i o r  smoo thness .  T h e  

e f f e c t  o f  t h i s  w i l l  n o t  be s e r i o u s  i f  f u l l  r e s i d u a l  w e i g h t i n g  
( i . e . ,  r e s i d u a l  t r a n s f e r  t o  t h e  c o a r s e  g r i d s  s u c h  a s  ( 3 . 2 2 )  
which  a s s i g n s  t h e  p r o p e r  t o t a l  w e i g h t  t o  t h e  r e s i d u a l  a t  e a c h  
fine-grid point) is used near the boundary. Better still, 

t h i s  t r o u b l e  c a n  b e  c o m p l e t e l y  avo ided  i f  w e  n o t e  t h a t  w e  need 
n o t  impose t h e  boundary  c o n d i t i o n  i n  r e l a x a t i o n .  All w e  need 

is  t o  smooth i t s  e r r o r ,  w i t h  a smooth ing  fac tor  a s  good a s  t h e  

i n t e r i o r  smoo th ing  f a c t o r .  I n  t h e  'above example ,  t h i s  i s  
o b t a i n e d  i f ,  a t  e a c h  boundary  p o i n t  i n  i t s  t u r n ,  i n s t e a d  o f  
s a t i s f y i n g  t h e  boundary  c o n d i t i o n  t h e r e ,  w e  change  i t s  e r r o r  
t o  become t h e  a v e r a g e  of t h e  e r r o r s  a t  a d j a c e n t  boundary  
p o i n t s .  I n  case of a smooth e r r o r  f u n c t i o n ,  tkis p r o c e d u r e  
would i n t r o d u c e  o n l y  O ( h )  ( i n s t e a d  of t h e  above  O(h'') ) 

r e l a t i v e  d i s t u r b a n c e  t o  the i n t e r i o r  r e s i d u a l  f u n c t i o n .  

O(h") t imes)  t h e  o t h e r  i n t e r i o r  r e s i d u a l s .  
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4 . 4  M u l t i - g r i d  conve rgence  f a c t o r s :  One l e v e l  a n a l y s i s  
The main p u r p o s e  o f  t h e  loczi l  mode a n a l y s i s  i s  t o  p red ic !  

t h e  conve rgence  r a t e  o f  m u l t i - g r i d  c y c l i n g  a l g o r i t h m s  ( S x .  

2 . 6 ) .  The s i m p l e s t  p r e d i c t i o n ,  t h e  o n e - l e v e l  a n a l y s i s ,  i s  i n  

terms of t h e  smooth ing  f a c t o r  1.1 . We assume t h a t  t h e  r e l a x a -  
t i o n  sweeps o v e r  l e v e l  k a f f e c t  e r r o r  components e x p ( i i - 5 )  

o n l y  i n  t h e  r a n g e  Tr/hk-l b 121 s T/hk (see Sec. 6 . 2  i n  ( B 3 1 ) .  

One s u c h  sweep r e d u c e s  such  a component by u ( f k i k )  . Hence, 
i f  t h e  m u l t i - g r i d  c y c l e  i n c l u d e s  s sweeps o v e r  each l e v e l ,  

a l l  t h e  e r r o r  components w i l l  be reduced a t  w o r s t  by L s .  \?e 

assume o f  c o u r s e  t h a t  s i s  n o t  t o o  l a r g e  (see Sec. 4 . 3 )  and 
t h a t  t h e  i n t e r p o l a t i o n  and  r e s i d u a l  t r a n s f e r s  a re  o f  t h e  
p r o p e r  o r d e r s  (see Appendix A i n  [ B 3 1 ) .  

0 

L e t  us d e n o t e  by 1.1 t h e  conve rgence  f a c t o r  p e r  r e l a x a -  
t i o n  work u n i t ,  where t h e  work u n i t  i s  t h e  work o f  o n e  sweep 
o v e r  t h e  f i n e s t  l e v e l  M (so t h a t  a sweep on l e v e l  k costs 
2d(k-M) work u n i t s ) ,  and where all o t h e r  work ( s u c h  as t h e  

work of i n t e r p o l a t i o n s  and t r a n s f e r s )  i s  i g n o r e d .  The above  
c y c l e  w i t h  s sweeps  on e a c h  l e v e l  c o s t s  r o u g h l y  
s ( 1 + 2 - d  + 2 -2d + ... ) FJ s ( 1 - 2  -d)-l  

t h e  o n e - l e v e l  a n a l y s i s  estimate i s  
s u c h  work u n i t s .  Hence 

( 4 . 9 )  

T h i s  estimate i s  somewhat c r u d e ,  b u t  it i s  e a s y  t o  o b t a i n  
(e .g . ,  u s i n g  SMORATE - see Sec. 4 . 2 )  and  i t  t u r n s  o u t  i n  p r a c -  
t i ce  t o  b s  a t  most 2 0 %  o f f  t h e  a c c u r a t e  t w o - l e v e l  e s t i m a t e .  

4 . 5  Mean s q u a r e  c o n v e r g e n c e  f a c t o r s  
E s t i m a t e  ( 4 . 9 )  i s  somet imes  t o o  p e s s i m i s t i c .  I t  p r e d i c t s  

t h e  c o n y e r g e n c e  o f  t h e  w o r s t  component,  as  i m p l i e d  by ( 4 . 6 ) .  

Sometimes,  e x c e p t  f o r  a v e r y  small  r a n g e  o f  S , t h e  v a l u e s  
I u ( g )  I are a l l  c o n s i d e r a b l y  smaller t h a n  1.1 , and hence  t h e  
worst c o n v e r g e n c e  r a t e  ( 4 . 9 )  w i l l  u s u a l l y  become dominan t  
o n l y  a f t e r  many c y c l e s .  The a c t u a l  d e c r e a s e  of t h e  e r r o r  i n  
a small n u n b e r  of  c y c l e s  d e p m d s  t ’ ien on  t h e  r > ? a t i v z  magni- 
t u d e  of t h e  v a r i o u s  components i n  t h e  i n i t i a l  e r r o r .  Deno t ing  
by c(S) t h e  a m p l i t u d e  o f  t h e  S component i n  t h e  i n i t i a l  
error, i t s  a m p l i t u d e  a f t e r  s e v e r a l  c y c l e s  i s  (2) e ( ! )  , 
(n/2 $ 6 7 ~ )  , where s i s  t h e  t o t a l  number o f  sweeps on 

- 
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the finest level made during these cycles. 
norm of the high-frequency errors is reduced by the factor 

Hence the.L2 

(4.10) 

TI where the integrations are over c s TI . Hence, the 
convergence factor per relaxation-work-unit is given by 

(4.11) 

where we assume that the additional work on coarser grids (to 
obtain convergence similar to (4.10) also in the low frequcn- 
cies) is still about (2d-1)-1 times the work on the finest 
grid. It is easy to see that asymptotically, as s + * , 
estimate (4.11) indeed tends to (4.9). 

An example of a relaxation scheme for which most 
are much smaller than p is given by the pointwise Gauss- 
Seidel relaxation of (3.461, where p = ~~(7r/2,0,...,0)~ x 

1-2~/(d-i) . Numerical experiments are reported in [Pl] in 
which the initial error was random, so that ? ( S I  E 1 could 
be assumed in (4.10). The prediction (4.111 , for ~ - i r i o u s  
values of s , turned out to be very precise. 

I p ( 0 )  I - 
- 

The computer routine SMORATE (see Sec. 2) calculates both 
estimate (4.11) and the asymptotic estimate ( 4 . 9 ) .  Its user 
can input the initial distribution e(:) . Otherwise 
c ( 0 )  3 1 is assumed, corresponding to random initial errors. 

4 . 6  Multi-grid convergence factors: Two-level analysis 

debugging purposes (comparisons with numerical experiments). 
More importantly, it yields no information concerning the 
inter-level operations (interpolations, residual transfers), 
and hence no tool for optimizing them. The two-level analysis 
presented below takes into account all the operations between 
the finest level M and the next coarser level M-1 , and 
makes some approximating assumptions concerning the still 
coarser levels (M-2, M-3, etc.). 

The one-level analysis is not always accurate enouqh f o r  

The Fourier mode exp (1 €I - x/hMl 
appears on level M-1 as the node exp(i2g.~/h~-~) , since 

of level-M errors 
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= 2hM . Hence, on level M-1 it coincides with every hM- 1 
mode exp(i8'.x/hM) such that 0 '  - - 0 (mode n )  . Thus, the 
inter-level analysis introduces coupling between each i!o;l'er 

mode S (0 6 s T )  and its (2 -1) high-frequency 
harmon ics  { e '  : i l g ' l  6 IT , - 8 '  z g(mod n ) }  . In parti- 

cular, the corrections interpolation IM-l is represented by 
the q x q  matrices 

n d 
TI 

n M  CS') defined by 'M- 1 

^M where is any q-vector and 0 < 101 s n/2 . Ifii-l(g') is 
called the s9mbol of IN-l . Usually IM-l 
any two correction functions v '-' and are inter- 
polated independently of each other. In higher-order finite 
element formulations, however, one discrete function may rep- 
resent a derivative of another, and the interpolation of each 
w i l l  then i n v o l v e  the other. Piost often used is the universal 
I-order multi-polynomial interpolation, for which 

is diagonal, i.e., M 

0 

(4.13) 

where 'p2(S) = (1+5)/2 , 'p4(S) = (8 + 35 + 55 3 1/16 , etc. For 
staggered grids rpI(S) depends on the relative positions of 
the coarse and the fine grids, which may depend on a . 

The residual transfers IM M-l are similarly represented 
,.PI- 1 by a symbol IM ( S ' ,  , where 

IM-l eig'.y'h - ;M-1 
M - M  ( 4 . 1 4 )  ( $ ' I  G e 

For non-staggered grids the right-hand side of (4.13) can des- 
cribe these matrices, too, including also the case 
which is called "injection". 

ig.g/h 

Q ~ ( X )  3 1 ,  

We consider a multi-grid cycle which includes s re1a:ca- 
tion sweeps on level M , transferring then the residuals to 
level M - 1  , solving this residual problem on level M-1 and 
interpolating its solution as a correction to level 41 . ( A  

more realistic cycle is discussed in Sec. 4 . 7 . 2  . )  In terms 
of the relaxation amplification F-dtrix R ( 2 )  (see Sec. 4 . 2 ) ,  

the characteristic matrices LM = jlh and Q P . I - l  - - e2h (see 
Sec. 3.21, and the interpolation symbols introduced above, the 
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d 

" 1  A 2d T 
This matrix transforms the (2 q)-vector 

h g  = cycg 1 ,  ... ,ycc 1 )  I 

2d are the harmonics of where g , . . . , g  
the q-vector amplitude of the 21 error 

1 

of error amplitudes 

A '  - 0 ,  and . y ( g ' )  is 
mode. The matrices 

on the right-hand side of (4.15) are block matrices defined 

d imen s ion 
by 

2dq x 2 d q 

V 
and I is the 2dq x Zdq identity matrix. The two-level 
amplification factor X ( 0 )  is the largest (in magnitude) 
eigenvalue of C ( 0 )  . The t w o - l e v e l  c o n v e r g e n c e  f a c t o r  is 

(4.16) 

- 
For various cases X was calculated by suitable computer 
routines. A general routine for this purpose (similar to 

. SMORATE) is n o t  y e t  available. 
0 

To estimate P , the convergence factor per relaxation- 
work-unitl we assume again that the same number of relaxation 
sweeps is made on all levels (cf. Sec. 4.7.2) and hence 

0 -& (1-2-d) 
U F J X  (4.17a) 

Here, only the work of relaxation is counted. When residuals 
are transferred to the coarse grid not by injection, this 
fransfer roughly costs another work-unit, and a more accurate 
estimate then i.s 

(4.17b) 0 - (s+l) -1 (1-2-d, 
C l - X  

- 
Numerical values for X and 19 are included in Sec. 4 . 8 .  

-57- 



4 . 7  M u l t i - g r i d  fac tors :  A d d i t i o n a l  remarks  , .  
4 . 7 . 1 .  O s c i l l a t o r y  c o e f f i c i e n t s .  T o  s t u d y  t h e  i n f l u e n c e  o f  

n o n - c o n s t a n t  c c e f f i c i e n t s ,  w e  c a n  c o n s i d e r  t h e  extrerr.2 c a s e  of  
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a d d i n g  h i g h - f r e q u e n c y  o s c i l l a t i o n s .  

(cf .  ( 3 . 1 0 )  ) , w e  c a n  t a k e  

I n s t e a d  of  c o n s t a n t  

( 4 . 1 8 )  

where  2 1  a r e  t h e  harmonics  of S ( c f .  Sec. 4 . 6 ) .  T h e  

t h e o r y  f o r  t h i s  c a s e  w i l l  go t h r o u g h  a s  i n  Sec. 4 . 6 ,  e x c e p t  
t h a t  R ( B )  and i h ( g )  w i l l  no l o n g e r  be b l o c k - d i a g o n a l ,  b u t  
f u l l  matrices. The coarse g r i d  symbol L 2 h  r e m a i n s  t h e  Same, 
S i n c e  t h e  coarse g r i d  o p e r a t o r  i s  assumed t o  h a v e  c o n s t a n t  
c o e f f i c i e n t s .  ( I n d e e d ,  when t h e  f i n e - g r i d  c o e f f i c i e n t s  ( 4 . 1 8 )  
are t r a n s f e r r e d  to t h e  coarse g r i d ,  e i t h e r  by i n j e c t i o n  o r  by 

a v e r a g i n g ,  o n e  g e t s  a c o n s t a n t - c o e f f i c i e n t  coarse-grid 
O p e r a t o r .  I n c i d e n t a l l y ,  n u m e r i c a l  e x p e r i m e n t s  LO11 have 

shown t h a t ,  a v e r a g i n g  is much p r e f e r a b l e  t o  i n j e c t i o n  i n  case 
t h e  h i g h - f r e q u e n c y  harmclnics i n  (4 .18)  h a v e  l a r g e  a m p l i t u d e s . )  

4 . 7 . 2 .  P e r t u r b a t i o n s .  The c y c l e  d e s c r i b e d  i n  S e c .  4 . 6  i s  n o t  
f u l l y  r e a l i s t i c .  
l eve l  M - 1  i s  n o t  c o m p l e t e l y  s o l v e d ,  i t  i s  o ~ l y  Solved t o  a 
r e l a t i v e  t o l e r a n c e  6 (see S t e p  F i n  S e c .  2 . 2 ) .  We c a n  g e t  a 
good idea  a b o u t  t h e  d i f f e r e n c e  be tween t h e  i d e a l  c y c l e  and 
t h e  rea l  o n e  by  r e p l a c i n g  C ( 8 )  w i t h  

\’ 

I n  t h e  r e a l  c y c l e  t h e  - r e s i d u a l  problem on 

- 
a n d  r e p l a c i n g  X b y  

( 4 . 2 0 )  

where  A n ( S )  i s  t h e  l a r g e s t  e i g e n v a l u e  of  C n ( g )  . VariGus 

v a l u e s  of 6 c o u l d  be u s e d ,  b u t  f o r  c o n s i s t e n c y  w i t h  t h e  

above work a s s u m p t i o n  ( i . e . ,  t h a t  t h e  c y c l e  c o n t a i n s  t h e  same 

T h i s  e q u a t i o n  may require i t e r a t i v e  s o l u t i o n ,  b u t  two i t e r -  
a t i o n s  a re  a c t u a l l y  enough,  namely ,  w e  c a n  u s e  t h e  es t imate  

number of sweeps un a l l  l e v e l s )  o n e  s h o u l d  t a k e  6 = 6 6 .  

. W e  c a n  a l s o  o p t i m i z e  6 and s by m i n i m i z l n g  
s + l + w / 4  where w is d e f i n e d  by = 6 (or 6 1 .  s + w / 4  

. .  



I .  
I .  

. 

4.7 .3 .  R i g o r o u s  u p p e r  bounds f o r  m u l t i - g r i d  c o n v e r g e n c e  r a + ? s  
i n  t h e  L2 norm ( f o r  c o n s t a n t - c o e f f i c i e n t s  problems i n  t h e  
i n f i n i t e  s p a c e )  c a n  be  d e r i v e d  by s l i g h t  c h a y e s  i n  t h e  above 
es t imates .  S e e  a n  example i n  Appendix C o f  I B 3 1 .  Such 

r i g o r o u s  bounds a re  n o t  too  u n r e a l i s t i c :  t h e  r i g o r o u s  bound 
f o r  log i s  t y p i c a l l y  3 times t h e  r ea i  a s y m p t o t i c  v a l u e .  

. I  

0 

4.7.4.  R e a l i s t i c  a s y m p t o t i c  convergence  f a c t o r s  a re  g i v e n  by 
( 4 . 1 6 )  and  ( 4 . 2 0 ) .  The d i f f e r e n c e  between them i s  o n l y  a few 
p e r c e n t .  The a s y m p t o t i c  convergence  e x h i b i z s d  by c y c l i n g  
a l g o r i t h m s  [ D 2 ]  d e v i a t e s  f rom (4.16) less t h a n  ( 4 . 2 0 )  d o e s .  
The s h a p e  o f  t h e  domain (and  i t s  b e i n g  f i n i t e )  p r o v e s  e x p e r i -  

m e n t a l l y  ([S1],[011) t o  have no e f f e c t  o n  t h e  a s y m p t o t i c  ( i . e . ,  

t h e  w o r s t )  Convergence f a c t o r ,  e x c e p t  when l e v e l  14 i s  v e r y  
coarse. T h i s  v a l i d a t e s  a b a s i c  a s s u m p t i o n  of t h e  loca l  mode 
a n a l y s i s .  

I n  case o f  a n o n l i n e a r  o r  v a r i a b l e - c o e f f i c i e n t  problem,  
t h e  r ea l  c o n v e r g e n c e  f a c t o r  s h o u l d  b e  no worse t h a n  t h e  
va r ious  f a c t o r s  o b t a i n e d  by l oca l  mode a n a l y s e s  a t  a l l  p o i n t s  
of t h e  domain,  and t h e  a n a l y s i s  o f  Sec .  4 .7 .1 .  T h e r e  i s  n o t  
enough c x p e r i m e n t a l  r e s u l t s  t o  g e n e r a l l y  c o n f i r m  t h i s ,  b u t  i n  
v a r i o u s  cases ( [ S l l ,  [D2])  it p r o v e d  t r u e .  

4 .7 .5 .  P r e c i s e  compar isons .  For  d e b u g g i n g  p u r p o s e s  (see 

S e c .  2 . 6 ) ,  a p r e c i s e  agrcer ren t  i s  d e s i r e d  be tween t h e  t h e o -  
re t ica l  and e x p e r i m e n t a l  a s y m p t o t i c  c o n v e r g e n c e  r a t e s .  The 
c o m p a r i s o n  t h e n  s h o u l d  n o t  be  made between v a l u e s  of 'cl , s u c h  
as ( 4 . 1 7 ) ,  s i n c e  those v a l u e s  a l r e a d y  i n v o l v e  some imprecise 

a s s u m p t i o n  a b o u t  t h e  work on c o a r s e r  g r i d s .  (The t h e o r e t i c a l  
P is  u s e d  f o r  t h e o r e t i c a l  o p t i m i z a t i o n s . )  I n s t e a d ,  t h e  t h e o -  
r e t i c a l  va lues  ( 4 . 1 6 )  and  ( 4 . 2 0 )  s h o u l d  b e  c o x p a r e d  w i t h  t h e  
e x p e r i m e n t a l  va lues  of  1 . The compar ison  can b e  made even  
more p r e c i s e  by compar ing  ( 4 . 1 6 )  w i t h  a n  e x p e r i m e n t a l  X ob- 
t a i n e d  by a s l i g h t l y  m o d i f i e d  a l g o r i t h m ,  i n  which much 
smaller 6 i s  em>loyed, a t  l e a s t  f o r  l e v e l  M-l. . T o  o b t a i n  
t h e  a s y m p t o t i c  ( i . e .  , t h e  worst p o m - b l e )  e x p e r i m e n t a l  r a t e  7 
w i t h o u t  s p e n d i n g  too many c y c l e s ,  it i s  h e l p f u l  t o  s t a r t  w i t h  
i n i t i a l  errors d e v i s e d  t o  c o n t a i n  a l a r g e  a m p l i t u d e  o f  a worst  
component  ( a  component S f o r  which t h e  s u p  i n  ( 4 . 1 6 )  i s  

0 

0 

- 
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a t t a i n e d  o r  a p p r o a c h s d ) .  Ano the r  a l t e r n a t i v e  i s  t o  compute 
and  cornp'are' t w o - l e v e l  mean-square conve rgence  f a c t o r s ,  s i m i -  

l a r  t o  t h e  o n e - l e v e l  mean-square f a c t o r s  o f  Sec. 4.5. 

-- 4.7.6. S i T p l i f i c d  multi- . .r id a n a l y s i s ,  which s e p a r a t e l y  t r e a t  

t h e  r e l a x a t i o n  p r o c e s s  and t h e  c o a r s e - g r i d - c o r r e c t i o n  p r o c e s s ,  
i s  d e s c r i b e d  i n  Appendix A o f  [B3] .  I t  i s  less  p r e c i s e  than  
t h e  above  t w o - l e v e l  a n a l y s i s ,  b u t  i t  i s  good eno.ugh f o r  
a l g o r i t h m i c  o p t i m i z a t i o n s ,  and g i v e s  a c l ea r  i d e a  of t h e  
i n t e r p o l a t i o n  o r d e r s  t h a t  s h o u l d  be u s e d ,  and o t h e r  pa rame te r s .  
I n  f a c t ,  g e n e r a l  r u l e s  f o r  t h e  i n t e r - l e v e l  o p e r a t i o n s  emerge 
f rom o rde r -o f -magn i tude  c o n s i d e r a t i o n s ,  and a l l  t h a t  i s  l e f t  

t o  b e  d e c i d e d  i n  e v e r y  p a r t i c u l a r  problem i s  t h e  r e l a x a t i o n  
scheme. T h i s  d e c i s i o n  can  b e  based  on t h e  s m o o t h i n g - r a t e  
a n a l y s i s  ( S e c s .  4.1, 4.2, 4.3) a l o n e .  

4.8 Numer ica l  t a b l e s  - 
Smoothing factors  and t h e  c o r r e s p o n d i n g  o n e - l e v e l  c o n -  

v e r g e n c e - r a t e  p r e d i c t i o n s  are  g i v e n  as  T a b l e  1 i n  [B3]. One- 
l e v e l  mean-square c o n v e r g e n c e  f a c t o r s  €or d e g e n e r a t e  o p e r a t o r s  

a re  g i v e n  i n  [ P l l w h e r e  t h e y  a re  compared w i t h  n u m e r i c a l  e x y e r i -  
rnents. Two- leve l  c o n v e r g e n c e  f a c t o r s  fo r  S t o k e s  e q u a t i o n s  a r e  
g i v e n  i n  Sec. 6.5 below. The f o l l o w i n g  t a b l e  i s  p a r t  of more 
e x t e n s i v e  t a b l e s  t o  a p p e a r  i n  [D2]. 

TABLE 4.1 
Two-leve l  conve rgence  ? r e d i c t i o n  f o r  t h e  5 - p o i n t  P o i s s o n  equa-  
t i o n  w i t h  G a u s s - S e i d e l  r e l a x a t i o n .  

S 
sweeps 

P e r  
c y c l e  
1 
2 
3 
4 
5 
2 
3 
4 
2 
3 
4 
3 

R e s i d u a l s  I n j e c t i o n  

- 
b 

.4472 

.2000 

.0894 

.0416 

.0276 

.2314 

.0996 

.0981 

.2619 
,1971 
.1962 
.2957 

( I = O )  

O - .75/s 
l l = A  2 

U 

.5469 

.5469 

.5469 

.5509 

.5843 

.5776 

.5618 

.6471 

.6050 

.6663 

.7369 

.7374 

R e s i d u a  1 We i g h t  i n g  s 

- 
x6 -- 

.4000 

.1923 

.1183 

.0833 

.0640 

.1821 

.lo47 

. 0 9 5 5  

.1952 

.1924 

.1934 

.2926 

(I=2) 
- 7 5 / ( ~ + l )  b = = , l ^ .  
0 

.7092 

.6622 

.6701 

.6888 ' 

.7092 

.6532 

.6550 

.7031 

.6647 

.7342 

.7816 

.7942 
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5. CAUCHY-RIEPlANN EQUATIOXS 

5.1 The differential problem 
As a first simple example of an elliptic system we have 

studied the equations 

Y Ux+V = F1 ( 5 .  la) . 
Uy -Vx = F2 ( 5 . 1.b) 

in a domain R , where U = U(x,y) and V = V(x,y) are the 
unknown functions, the subscripts denote partial derivatives, 
and Fi = Fi(x,y) are given functions. All functions are 
real. The homogeneous system F1 f F2 f 0 are the u s u a l  
Cauchy-Riemann equations, which express ar-lyticity of the . 
complex function U+iV . 

The matrix-operator form of ( 5 . 1 )  is 

where a x  and ay are partial derivatives with respect to 
x and y , respectively. The determinant of L is the 
Laplace operator - A  = -3 x -  ay . Hence (5.2) or (5.1) is a 
second-order elliptic system, and its solution is dscermined 
by one condition along the boundary a i l  . A s  such a boundary 
condition we can, f o r  example, require 

2 2  

(u(x) ,V(XH, = G ( X )  , e ( X  E an) , ( 5 . 3 )  

w h e r e  ( U , V ) ,  denotes t h e  c o m p o n e n t  of t h e  vector ( U , V )  

normal to the boundary in the outward direction. From (5.la), 
( 5 . 3 )  and the divergence theorem we get the “compatibility 
condition” 

F2dxdy = 1 G ds . 
n an 

( 5 . 4 )  

If (5.4) holds then equations (5.1) 3r ( 5 . 2 1 ,  !:ith the 
boundary coniilition ( 5 . 3 ) ,  is a well-posed problem: A unique 
solution exists and depends continuously on the data 
F2 , and G . F1 , 
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5 . 2 ,  Discrete Cauchy-Riemann e q u a t i o n s  

Suppose w e  f i r s t  t r y  t o  a p p r o x i m a t e  ( 5 . 1 )  by t h e  c e n t r a l  

d i f f e r e n c e  e q u a t i o n s  

h h 2  
( P y 6 y )  I 

h h 2 -  so t h a t  
d e t  Lh = - ( ~ ~ 6 ~ )  

w i t h  t h e  symbol (see Sec. 3.2)  

"11 2 2 L ( e , , e 2 )  = s i n  e l + s i n  e2 . 
T h i s  o p e r a t o r  i s  n o t  e l l i p t i c ,  s i n c e  
= L (n,n). = 0 . 

C h ( n ,  
"h 

( 5 . 5 b )  

( 5 . 6 )  

(5.7) 

A L  
) = L " ( O , i r ,  = 

I n d e e d ,  t h e  homogeneous ( 5 . 5 )  e q u a t i o n s  (FF Z F2 = - 0 )  

h a v e  t h e  o s c i l l a t o r y  s o l u t i o n s  

U h (ah ,Bh)  = C 1 ( - l ) a  + C 2 ( - 1 ) B  + C 3 ( - l )  a+ B 

a+ B Vh(ah,Bh) = C4 ( - 1 ) O  + C5 (-1) + C6 (-1) 
( 5 . 9 )  

which  do n o t  a p p r o x i m a t e  any  s o l u t i o n  o f  t h e  c o r r e s p o n d i n g  

d i f f e r e n t i a l  e q u a t i o n .  Note, however ,  t h a t  s o l u t i o n s  l i k e  
(5,.9) v a n i s h  ir. t h e  avsrage, i . e . ,  f o r  a 

s u i t a b l e  local  a v e r a g i n g  o p e r a t o r  Mh . For e x a m p l e ,  s u i t a b l e  
a v e r a g i n g  o p e r a t o r s  are M~ = P h v h  o r  M~ = ( u h , u i ) 2  . 
t h e  f i r s t  case t h e  g r i d - l i n e s  o f  'Mhuh a re  ha l f -way between 
g r i d  l i n e s  o f  uh 1. G e n e r a l l y ,  t h e  s o l u t i o n s  o f  ( 5 . 5 )  w i l l  
be good s o l u t i o n s  i n  t h e  a v e r a g e .  Such d i f f e r e n c e  o p e r a t o r s  
w e  c a l l  quasi elliptic. S e e  Sec. 3 .4 .  

M h U h  = MhVh = 0 

( I n  
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. 

Let us now construct an elliptic difference approxination 
Lh to ( 5 . 1 ) .  If the equations are to have the form 

D)Jh+D2Vh = F1 h 
Y 

(5. l o a )  

where Dh and Dj are some difference approximations to ax 
and ay , 
approximation to the Laplace operator - A  . The simplest such 
operator is the five-point operator which is obtained by taking 
either 

Y 
det Lh = -D1D4 - D2D3 x x  Y Y  then should be an elliptic 

(5.11) 

(5.12) 

1 4 -  h '. 3 -  h D, = D, - a, I D~ = D~ - ay , Y 
Or 

D~ 1 = .- Dx*= 2 a x  F I D2 = D3*= a F 
Y Y Y '  

or  a B  replacing one or both of the aF. Here aB*=aF I aF*=aE . 
Approximations of the form (5.12) could give central approxi- 

approximation to (5.1) I and its truncation error is therefore 
O(h) . Thus we prefer to use (5.11). This we can do only by 
using staggered grids for Uh and Vh . 

" mations to - A  I but (5.10) with (5.12) is not a central 

The grid we use and the positioning of the discrete 
variables are shown in Figure 5.1. 
can indeed approximate (5.1) by 

t]ith this positioning we 

a:uh + ahvh = FP Y I at c e l l  centers @ ( 5 . 1 3 a )  

ahUh - aiVh = F2 h , at interior vertices @ , (5.13b) 
Y 

and the symbol is that of the 5-point Laplacian 
namely axx - ayy ' -A h = - h  

This symbol vanishes only for €I1 E O 2  E O(mod 2a) . Thus 
(5.13) is an elliptic (even R-elliptic) difference system. 

For simplicity we consider here only domains with boun- 
dary along grid lines. It is then simple to discretize the 
boundary condition ( 5 . 3 ) .  On each boundary link (the heavy 
lines in Figure 5.1) the variable ( U , V ) ~  is already defined 
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FIGURE 5.1 D i s c r e t i z a t i o n  of Cauchy-Riemann E q u a t i o n s .  

A t y p i c a l  p a r t  o f  t h e  g r i d  i s  shown. 
f u n c t i o n s  Uh and  Vh and t h e i r  computed a p p r o x i r n a t i o n s  u 
and vh ( u  and v i n  t h e  f i q u r e )  a r e  d e f i n e d  a t  t h e  c e n t e r s  
of v e r t i c a l  and h o r i z o n t a l  l i n k s ,  r e s p e c t i v e l y .  The f i r s t  
e q u a t i o n  (5 .13a)  i s  c e n t e r e d  a t  c e l l  c e n t e r s ,  where i t s  r i g h t -  
hand  s ide,  i s  d e f i n e d  and w h e r e  0 i s  shown i n  t h e  

f i g u r e .  The second e q u a t i o n  ( 5 . 1 3 b )  i s  c e n t e r e d ,  and F2 i s  
d e f i n e d ,  a t  t h e  g r i d  ver t ices ,  as shown by @ i n  t h e  
f igur-e.  

The d i s c r e t e  unknown 
h 

Ft h 

a t  t h e  c e n t e r  of t h e  l i n k ,  s o  ( 5 . 3 )  is d i s c r e t i z e d  t o  

( 5 . 1 5 )  h h  (U , V  I n  = Gh a t  m i d p o i n t s  of boundary  l i n k s .  

SummirAg (5 .13a)  over a l l  t h e  ce l l s  of o u r  domain w e  g e t  t h e  
c o m p a t i b i l i t y  c o n d i t i o n  

h 1 G ( x , y )  ( 5 . 1 6 )  h 
F l ( X i Y )  = 

boundary  m i d p o i n t s  
1 

c e l l  centers 

which i s  t h e  d i s c r e t e  a n a l o g  of ( 5 . 4 ) .  

Theorem. If ( 5 . 1 6 )  h o l d s ,  t h e n  t h e  d i s c r e t e  C a u c h y - R i e c a n n  
e q u a t i o n s  ( 5 . 1 3 )  uith t h e  boundary c o n d i t i o n s  ( 5 . 1 5 )  k c y e  a 
unique s o t u t i o n .  

I n d e e d ,  t h e  t o t a l  rIumber of equat ion: ,  ( 5 . 1 3 )  , ( 5 . 1 5 )  

eqha l s  t h e  t o t a l  number o f  ce l l s  and v e r t i c e s  i n  t h e  g r i d .  
The number of  discrete unk??wns i s  t h e  number of  l i n k s .  Hence, 
by a well-known f o r m u l a  o f  E u l e r ,  t h e r e  i s  o n e  more e q u a t i o n  
t h a n  unknowns. B u t  t h e  equa t ions  a re  d e p e n d e n t ,  a s  w e  saw i n  
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c o n s t r u c t i n g  t h e  c o m p a t i b i l i t y  c o n d i t i o n  (5.16). Hence, if 

(5.'16)' h o l d s ,  w e  c a n  remove an  e q u a t i o n  and have  ' the same 
number of e q u a t i o n s  as unknowns. I t  i s  t h e r e f o r e  er,oucJh t o  

p r o v e  t h e  theorem f o i  t h e  homogeneous case 
Gh E 0 . 
d i s c r e t e  " s t r e a m  f u n c t i o n "  Jlh , d e f i n e d  a t  t h e  v e r t i c e s  o f  
t h e  g r i d ,  such  t h a t  Uh = a: ~l~ , 
geneous  (5 .13b)  y i e l d s  = 0 , and t h e  homogeneous 
( 5 . 1 5 )  i m p l i e s  t h a t  ~i~ a l o n g  t h e  boundary  v e r t i c e s  is con- 
s t a n t .  Hence, by t h e  maximum p r i n c i p l z ,  Qh i s  c o n s t a n t  
eve rywhere .  Thus,  i n  t h e  homogeneous ease U 2 0 and 
V E 0 I which i s  what  w e  had  t o  show. 

F: 5 0 , Ff  E 0 , 
I n  t h i s  case ( 5 . 1 3 a )  i m p l i e s  t h e  e x i s t e n c e  of a 

vh = -ah, J l h .  The homo- 

h 

h 

5 . 3  DGS r e l a x a t i o n  and i t s  smoo th ing  r a t e  

Most r e l a x a t i o n  schemes are  b a s e d  on one- to-one  c o r r e s -  
pondence  between e q u a t i o n s  a n d  unknowns: The b a s i c  r e i a x a -  
t i o n  s t e p  is t o  s a t i s f y  ( o r  o v e r - s a t i s f y ,  o r  u n d e r - s a t i s f y )  
o n e  of t h e  d i s c r e t e  e q u a t i o n s  by c h a n g i n g  t h e  c o r r e s p o n d i n g  
unknown (or s a t i s f y  a g roup  of e q u a t i o n s  by c h a n g i n g  t he  

c o r r e s p o n d i n g  g roup  o f  unknowns).  S u c h  One-to-one c o r r e s -  
pondence i s  n o t  a lways  n a t u r a l .  I n  o u r  case, i t  i s  c lear  
a l r e a d y  i n  t h e  d i f f e r e n t i a l  e q u a t i o n s  ( 5 . 1 )  t h a t  i t  would be 
u n n a t u r a l  t o  r e g a r d  ( S . l a ) ,  s a y ,  as  t h e  e q u a t i o n  c o r r e s -  
pond ing  t o  t h e  unknown U , and ( 5 . l b )  a s  t h e  one  c o r r e s -  
pond ing  t o  V . The e n t i r e  s y s t e m  c o r r e s p o n d s  t o  (U,V) . I n  
t h e  d i f f e r e n c i  e q u a t i o n s  i t  would be i m p o s s i b l e  t o  have even  
a one- to-one  c o r r e s p o n d e n c e  be tween p a i r s  o f  e q u a t i o n s  and 
pairs of unknowns, since t h e  n u m b e r  of u n k n o w n s  i s  o n e  less 
t h a n  t h e  number o f  e q u a t i o n s .  ( I f  the d i s c r e t e  e q u a t i o n s  
( 5 . 1 2 )  y.iere u s e d ,  it wculd be p o s s i b l e  t o  e ~ p l o y  the csot? 
scheme i n t r o d u c e d  i n  Sec. 4 . 1 ,  w i t h  any  0 c i~ < 1 . )  

W e  w i l l  t h e r e f o r e  u s e  " d i s t r i b u t i v e  r e l a x a t i o n " ,  i . e . ,  
a r e l a x a t i o n  scheme t h a t  s a t i s f i e s  e a c h  d i s c r e t e  e q u a t i c n  i n  
i t s  t u r n  by d i s t r i b u t i n g  c h a n c e s  t o  s e v e r i l  unknowns, i n  a 
n a t u r a l  manner. 

To  d e r i v e  a n a t u r a l  d i s t r i b u t i v e  scheme w e  n o t e  t h a t  

n e i t h e r  ( 5 . 1 3 a )  n o r  (5 .13b)  a re  e l l i p t i c  e q u a t i o n s  by them- 
s e l v e s .  I t  is t h e i r  c o m b i n a t i o n  t o g e t h e r  which i s  e l l i p t i c .  
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Hence, i n  r e l a x i n g  ( 5 . 1 3 a ) ,  f o r  example ,  w e  s h o u l d  t a k e  
(5 .13b)  i n t o  a c c o u n t .  The s i m p l e s t  way t o  do i t  i s  t o  r e l a x  

( 5 . 1 3 a )  i n  s u c h  a way t h a t  e q u a t i o n s  ( 5 . 1 3 b )  a r e  n o t  "damaged.", 
i . e . ,  i n  a way which  p r e s e r v e s  t h e  r e s i d u a l s  of ( 5 . 1 3 b ) .  We 

do t h i s  by s i m u l t a n e o u s l y  c h a n g i n g  f o u r  unknowns, i n  t h e  

f o l l o w i n g  way: 
h h  

be t h e  c e l l  c e n t e r  where w e  n e x t  wish  t o  r e l a x  
L e t  (uh ,vh)  be t h e  c u r r e n t  a p p r o x i m a t i o n  t o  (U , V  1 . 
( x , y )  L e t  

( 5 . 1 3 a )  , and l e t  

rh 1 = F: - a:uh - a:vh ( 5 . 1 7 )  

b e  t h e  "dynamic r e s i d u a l "  a t  ( x , y )  . T h a t  i s ,  r i s  t h e  
r e s i d u a l  a t  ( x , y )  j u s t  b e f o r e  r e l a x i n g  t h e r e .  The r e l a x a -  
t i o n  s t e p  o f  ( 5 . 1 3 a )  a t  ( x , y )  is  made up o f  t h e  f o l l o w i n g  
f o u r  c h a n g e s  : 

h h h h u ( x + p y )  + u ( x + T I y )  + 6 

u h ( x -  ;,y, + u h ( x  - 7 p Y )  h - 6 
( 5 . 1 8 )  

h 

where  
6 = , h r  1 h  . ( 5 . 1 9 )  

I t  i s  e a s y  t o  check  t h a t  t h e  d i s t r i b u t i o n  of c h a n g e s  ( 5 . 1 8 )  i s  

s u c h  t h a t  t h e  r e s i d u a l s  
h h  h h  
Y 

r: = F: - a u + axv ( 5 . 2 0 )  

a t  a l l  n e i g h b o r i n g  ver t ices  a re  n o t  changed ,  x h a t e v e r  t h e  

v a l u e  of 6 . The c h o i c e  of 6 ( 5 . 1 9 )  i s  nade  so t h a t  :;'cer 

t h e  c h a n g e s  t h e  r e s i d u a l  r , ( x , y )  w i l l  v a n i s h .  T h i s  i s  i n  
t h e  manner of t h e  G a u s s - S e i d e l  r e l a x a t i o n ,  where o l d  v a l a e s  
are r e p l a c e d  by new v a l u e s  so as t o  s a t i s f y  o n e  d i f f e r e n c e  

equat ion .  
Gauss S e i d e l  ( D G S )  schemes .  I n  case k of t h e  f o u r  v a l u e s  
changed  i n  (5.18) are  boundary  v a l u e s  ( k = l  n e a r  b o u n d a r i e s ,  
e x c e p t  near  c o r n e r s ) ,  t h e n  no s u c h  change  s h o u i d  b e  i n t r o d u c e d  
i n  t h o s e  va lues ,  and ( 5 . 1 9 )  =s r e p l a c e d  by 

h 

.. . Such schemes may t h e r e f o z e  b e  c a l l e d  C i s t n z u : c t t v e  

( 5 . 2 1 )  
1 h 6 = = h r l  . 
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The  r e l a x a t i o n  of ( 5 . 1 3 b )  i s  made i n  a s i m i l a r  manner.  
i s  t h e  v e r t e x  t o  be r e l a x e d ,  t h e  r e l a x a t i o n  s t e p  I f  ( x , y )  

w i l l  i n c l u d e  t h e  changes  

( 5 . 2 2 )  

) + 6  , 
where 

The d i s t r i b u t i o n  ( 5 . 2 2 )  is  such  t h a t  t h e  r e s i d u a l s  

b e  p r e s e r v e d ,  and 6 i n  ( 5 . 2 3 )  i s  s u c h  t h a t  e q u a t i o n  (5 .135)  

a t  (x,y) w i l l  be  s a t i s f i e d  by t h e  chanped v a r i a b l e s .  

6 = a h r 2  1 h  . ( 5 . 2 3 )  

r: w i l i  

The above r e l a x a t i o n  s t e p s  can  be t a k e n  i n  v a r i o u s  

o r d e r s .  I n  o u r  programs,  each  comp1.ete r e l a x a t i o n  sweep com- 
p r i s e d  of two p a s s e s :  The f i r s t  p a s s  r e l a x e s  e q u a t i o n  15.13a)  
by (5 .18-19) ,  l e t t i n g  ( x , y )  p a s s  o v e r  all c e l l  c e n t e r s  i n ,  

say,  l e x i c o g r a p h i c  o r d e r .  The second  p a s s  s c a n s  all t h e  g r i d  
v e r t i c e s ,  r e l a x i n g  (5 .13b)  by (5 .22 -23) .  

-- Remark. I n  terms of t h e  d i s c r e t e  " s t r e a m  f u n c t i o n "  q h  (see 
S e c t i o n  5 . 2 )  t h e  second p a s s  o f  t h i s  r e l a x a t i o n  r e d u c e s  t o  
t h e  famil iar  p o i n t - b y - p o i n t  Gauss -Se ide l  r e l a x a t i o n .  The 
f i r s t  p a s s ' m a y  be viewed as  a s i m i l a r  r e l a x a t i o n  f o r  t h e  d i s -  

Crete " p o t e n t i a l  f u n c t i o n "  (0 , def ' ined  by U h  = ax@ + f  , 
h h h  h 

h h,h 
r Fa = a,& . h h  

The smooth ing  f a c t o r  can  most c o n v e n i e n t l y  be c a l c u l a t e d  
i n  terms o f  t h e  r e s i d u a l  f u n c t i o n s  ( r l , r 2 )  . For t h e  Fourier 
component e x p ( i B l x / h + i e 2 y / h )  , l e t  A be t h e  a r p l i t u d e  
of h r l  b e f o r e  t h e  f i r s t  p a s s ,  A i t s  a m p l i t u d e  a f t e r  the 

pass, t h e  a m p l i t u d e  o f  t h e  dynamic hrl r e s i ; t u z l s ,  snd 
B t h e  a x p l i t u d e  of 6 . I t  is c l e a r  from ( 5 . 1 9 )  t h a t  

B = i / 4  , and f rom (5.18) 

- h 
h 

- i B 1  - i e 2  
i = ~ + ~ e  + B e  

i o ,  0 i o 2  
X = B ~  + B e  
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Hence -i0, -ie2 
B = A/(4-e - e  1 ,  

and the amplification factor of r: in the first pass is 

- iB1 ie2 
e + e  A ( ? )  = ; = -i0, -i0, (5.24) 

I L 4 - e  - e  

The residuals ri are not changed by the first pass. Simi- 
larly, in the second pass the Fourier components of r2 are 

h amplified by A(!) , while rl remains unchanged. In a 
complere sweep the amplitude of the vector (rlIr2) is 
therefore amplified by the "amplificaticn matrix" 

h 

h h  

" )  . (5.25) ( "" ( 5 )  
Hence the smoothing factor is 

(5.26) 

Unsurprisingly, this smoothing factor is the same as in 
Gauss-Seidel relaxation f o r  the 5-point Laplacian. The con- 
vergence rate of relaxation is also essentially the same as 
for Poisson problems, 3s was confirmed by numerical experi- 
men ts . 
5.4. Multi-grid procedures 

Assume now we have a sequence of grids (levels) with 
1 mesh-sizes hl, ...,% , where hk+l = Thk . The relative 

position of the different grids is shown in Fiqure 5 . 2 .  

Instead of F1, F2, Gh, U , Vhl u , \- , r: and r: used 
above, the discrete functions on the k-th lsvel will be deno- 
ted by F1, F2, G , Uk, Vk, u , v , r: 
The multi-grid algorithm we use is the accomrrodative Cycle C 
algorithm (see Section 2.6 above, o r  Section 4 in [B3]). For 
relaxation we employ the DGS sweeps described in Section 5.3 
above. 

The coarse-to-fine interpolation can be of first order, 

h h  h h h  

k k k  k k  and ri , respectively. 

since this is the highest order of derivatives in the Cauchy- 
Riemann operator. An obvious way of doing such an inter- 
polation (see Figure 5.2) is 
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. U U U 

FIGURE 5 . 2  
Same notations as in Figure 5.1, with heavier-type being used 
€or the coarse-grid and lighter-type for the fine-grid. 

A coarse-grid cell divided into fine-grid cells. -- 

[u k (x,y+fhk+l) 01- u(x#y-fhk+l) if x 

otherwise 

and similarly f o r  
interpolations instead. 

Ik k+l vk . 

The Cauchy-Riemann problem is linear. 

One can of course use linear 

We can therefore 
make coarse-grid corrections either by the Correction Scheme 
or the Full-Approximation Scheme (FAS) .  In the latter case 
we have to define the fine-to-coarse transfer of solution 

k k+l k 
(‘k+l “k+l 
the coarse-grid and fine-grid positions of u and v in 
Figure 5.2) : 

‘k+l 

k+l) . We use the following averaging (see 

k uk+l(x,y) - k + l  u)c .+ l  (X,Y) - pY (5.28a) 
- 1 k+l k+l = z  [u (x,y + thk+l) + u ( x , y  - !Zhk+l) 1 
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k + l  v k + l  'k+l v k + l ( x , y )  = px ( X I Y )  
( 5 . 2 C b )  

k k + l  The f i n e - t o - c o a r s e  t r a n s f e r  of r e s i d u a l s  

( res idua ls  of t h e  f i rs t  equa t ion ,  a t  c e l l  c e n t e r s )  
done  by a v e r a g i n g :  

Ik+lrl 
i s  a l s o  

k + l  - k + l  k + l  k + l  - !Jx Py r1 k 
'k+l rl ( 5 . 2 9 )  

( S e e  t h e  c o a r s e - g r i d  and f i n e - g r i d  p o s i t i o n s  o f  e q u a t i o n s  

i n  F i g u r e  5 . 2 . )  When t h e  C o r r e c t i o n  Scheme i s  u s e d ,  ( 5 . 2 9 )  
serves as t h e  r i g h t - h a n d  s ide of e q u a t i o n  ( 5 . 1 3 a )  on t h e  coar- 
ser l e v e l  hk . 
t h a t  some terms are c a n c e l l e d  and  some of t h e  a d d i t i o n s  c a n  be 

made o n l y  o n c e  f o r  two n e i g h b o r i n g  coarse-grid cells. 
i n t e r e s t i n g  t o  n o t e  t h a t  when FAS i s  used  i t  i s  n o t  n e c e s s a r y  
t o  c a l c u l a t e  ( 5 . 2 9 ) .  T r a n s f e r r i n g  u k+l  and vk+' by ( 5 . 2 8 )  

and r e s i d u a l s  by (5.291,  it is e a s y  t o  see t h a t  t h e  FAS coarse- 
g r i d  e q u a t i o n  w i l l  read 

1 

I n  c a l c u l a t i n g  (5 .29)  u s i n g  ( 5 . 1 7 )  , o b s e r v e  

I t  i s  

k k  k + l  , k+ l  k + l  
Y F1 

a x  u + a k  uk = b x  
Y 

(5 .30)  

Thus,  t h e  c o a r s e - g r i d  e q u a t i o n  i n  t h i s  case i s  n o t  a f f e c t e d  a t  
all by t h e  f i n e - g r i d  s o l u t i o n .  

w e  f i n d  t h a t  ( 5 . 3 0 )  i s  a c t u a l l y  i d e n t i c a l  w i t h  (5.13a) f o r  t h e  
k - t h  l e v e l .  I n  o t h e r  words ,  t h e  r e l a t i v e  t r u n c a t i o n  error i n  
( 5 . 1 3 a )  v a n i s h e s .  

k k k Fk+l 
x p Y  1 

I f  we l e t  F1 = !J 

A n o t h e r  n i c e  f e a t u r e  of (5.301 i s  t h a t  i f  t h e  compat i -  

b i l i t y  c o n d i t i o n  ( 5 . 1 6 )  i s  s a t i s f i e d  on t h e  f i n e  g r i d ,  i . t  w i l l  

a u t o m a t i c a l l y  be s a t i s f i e d  i n  t h e  c o a r s e  g r i d  problem ( u p t o  
r o u n d - o f f  errors, of course) .  

The r e s idua l s  o f  (5 .13b)  c a n  be t r a n s f e r r e d  t o  t h e  c o a r s e '  

g r i d  by " i n j e c t i o n "  : 

k+ 1 ( 5 . 3 1 )  

s i n c e  a n y  c o a r s e - g r i d  c e n t e r  of t h a t  e q u a t i o n  ( a n y  c o a r s e - g r i d  
v e r t e x )  coincides w i t h  a. f i n e - g r i d  c e n t e r  of t h e  equa t ion  ( a  
f ine-gr id  v e r t e x )  . 
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We 'have made experiments with the Cycle C algorithm only. 
For' FMk algorithms , a higher-order interpolation routine 
should be added. This interpolation in the present case needs 
to be at least quadratic (order 3 ) .  

5 . 5  Multi-grid results 
Numerical experiments with this algorithm are reported 

in [Dl]. They show, unsurprisingly, exactly the same conver- 
gence as in multi-grid solutions for Poisson problens; narr.ely, 
a convergence factor of about . 5 5  per RWU (relaxation work 
unit). Ii.deed, the entire procedure can be descritzd as a 
multi-grid process for two Poisson problem. (One Poisson 
problem in terms of the stream function for the.case 
the other in terms of the potential function for the case 
F2 5 0.) 
Cycle C algorithm only, it can be safely predicted that the 
Fixed FMG algorithm (Section 2 . 2 )  will solve the problem to 
within the truncation errors (and even far below, when 
T-extrapolation is employed), in 5.3 RWU. 

F1 E 0 ,  

Hence although experiments were conducted with 

The number of operations in such a CS algorithm, taking 
into account the relexation sweeps.and all the coarse-to-fine 
and fine-to-coarse transfers, is about 61n , where n is the 
number of unknowns in the finest grid. Almost all these 
operations are either additions or shifts (i.e., multi- 
plications by an integer power of 2.1; less than 3.5n of them 
are real multiplications. In fact, these 3.5n.multiplications 
(needed in the quadratic interpolations) can be repl.acci by 
4n additions p l u s  2n s h i f t s .  

There is a faster way €or solving the discrete Cauchy- 
Riemann equations ( 5 . 1 3 )  : Subtracting from Uh a function 
uo h which satisfies ax h Uo h Z F h  - , we! get a new system in 

which FF 0 . The problem can then be rewritten as a . 

Poisson problem for the discrete stream function 
that Poisson.problem by a similar Full Multi-Grid algorithm, 
together with the operations of subtracting U: and con- 

(additions and shifts ,snly. Cf. [B31). The main purpose of 
this chapter, however, was to study methods for solving ellip- 
tic sgs tems .  The techniques developed €or the present simple 
system are applicable to much more complicated ones. 

1ph . Solving 

' structing Uh and Vh would require about 23.5n operations 
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6. STEADY-STATE STOKES EQUATIGNS . .  
6 . 1  The d i f f e r e n t i a l  p roblem 

As a p r e l u d e  t o  t h e  t r e a t m e n t  o f  t h e  f u l l  N a v i e r - S t o k e s  

e q u a t i o n s ,  v:? c o n s i d e r  now t h e  s t e a d y - s t a t e  S t o k e s  e q u a t i o n s  
i n  h d - d i m e n s i o n a l  domain 

( G .  l a )  

( 6 . l b )  

where T! = (U1,...,U,) r e p r e s e n t s  t h e  v e l o c i t y  o f  a f l u i d  and 
P r e p r e s e . i t s  t h e  p r e s s u r e ,  0 = ( a l , . . . ,  
o p e r a t o r ,  A = a + ... + ad  i s  t h e  L a p l a c e  o p e r a t o r ,  and  
FG a n d  = (F1,.. . ,Fd)  are  g i v e n  f o r c i n g  f u n c t i c n s .  ( 6 . 1 )  

a re  t h e  e q u a t i o n s  o f  " c r e e p i n g "  f l o w s  ( v a n i s h i n g  Reynolds  
n u m b e r ) .  ( 6 . l a )  i s  t h e  " c o n t i n u i t y  e q u a t i o n "  ( u s u a l l y  w i t h  
v a n i s h i n g  s o u r c e  t e r m :  Fo 0 1 ,  a n d  ( 6 . l b )  i s  t h e  v e c t o r  o f  

d momentum e q u a t i o n s .  

i s  t h e  g r a d i e n t  a d )  2 2 
1 

The m a t r i x - o p r ' a t o r  form o f  ( 6 . 1 )  i s  

L I:; (6.2) 

and t h e  o p e r a t o r  d e t e r m i n a n t  i s  

( 6 . 3 )  d d e t  L = ( - A )  . 
Hence ( 6 . 1 )  i s  a 2d-order  e l l i p t i c  s y s t e m  and w i l l  r e q u i r e  d 
boundary  c o n d i t i o n s .  These  are  u s u a l l y  g i v e n  by s ? c c i f y i n g  
t h e  v e l o c i t y  on t h e  boundary 

!(XI = G(x) 1 (X E -an) , ( 6 . 4 )  

where  5 = (G1,. . . , G d )  . 
E q u a t i o n s  ( 6 . 1 )  w i t h  t h e  boundary  c o n d i t i o n s  ( G .  4 )  con-  

s t i t u t e  a w e l l - p o s e d  problem,  p r o v i d e d  t h e  c o m p a t i b i l i t y  con- 
d i t i o n  

Fo dE = / 
n a n  

( 6 . 5 )  

is  s a t i s f i e d ,  where do i s  t h e  boundary  element m u l t i p l y i n g  

a n  o u t w a r d  normal u n i t  v e c t o r .  

-72- 



. 

6 . 2  Finite-difference equations 

best to discretize (6.11 on a staggered grid. Such a grid, 
in the two-dimensional case, is shown in Fig. 6.1. In the 
general d-dimensional case, the grid planes define cells, each 
cell with 2d faces. The discrete velocity Uh and its com- 
puted approximations uh are defined at centers of j-faces, 
i.e., faces perpendicular to the j-th coordinate’. The discrete 

By arguments similar to those in Section 5 . 2 ,  we find it 

j 
j 

FIGURE 6.1 Discretization of two-dimensional S t o k e s  Equations 
A typical part of the grid is shown. The discrete pressure 
ph is defined at cell centers ( p ) .  The discrete velocity 

u: 
centers: 111 = boundary and exterior centers) , and u; is 
defined at centers of horizontal links (0 and a 1 .  The 
discrete continuity equations are centered at cell centers 
(p) . The j - t h  momentum equation is centered at interior 
values of uh (0). The exterior values of u1 h and u2 h 

(at 111 and a , respectively, but not on the boundary) 
are fictitious. ! ;  

is defined at centers of vertical links (0 = interior 

j 
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p r e s s u r e  Ph and i t s  computed a p p r o x i m a t i o n  ph are  l o c a t e d  

a t  c e l l  c e n t e r s .  The d i s c r e t e  a p p r o x i m a t i o n  t o  (6.1) c a n  then‘ 
be w r i t t e n  ( w i t h  t h e  n o t a t i o n  o f  Sec .  3 . 2 )  as  

. .  

d 
1 a h  uh = F: a t  cell centers 

j = l  I j 
(G.6a) 

- A  h h  u .  + a . ~  h = F h a t  c e n t e r s  o f  j - f a c e s ,  (6 .6b)  
3 3 j 

( j = l , . . . , d )  

where t h e  d i scre te  a p p r o x i m a t i o n  A h  t o  L a p l a c e  o p e r a t o r  i s  

t h e  u s u a l  ( 2 d + l ) - p o i n t  a p p r o x i m a t i o n  1 ( a t ) *  . F o r  a p o i n t  
5 n e a r  a boundary ,  however,  

T h i s  v a l u e  i s  d e f i n e d  by q u a d r a t i c  e x t r a p o -  v a l u e  u j ( x  l - e  
E, h h b  h b  b and U .  ( 5  ) = G .  ( 2  ) , where 5 l a t i on  f r o m  
3 3 e ’ *  i s  a boundary  p o i n t  on t h e  segment  ( 5 , ~  ) . T h i s  d e f i n i t i o n  

i s  u s e d  t o  e l i m i n a t e  t h e  e x t e r i o r  v a l u e  from A U j ( 5 )  , so 
t h a t  t h e  d i scre te  L a p l a c i a n  i s  modi f ied  a n d  i n c l u d e s  a 

boundary.  v a l u e  of vh . 

d 

h h  A u j  (x) ’may i n v o l v e  an e x t e r i o r  

U .  ( y )  , u j  ( 2 )  

h h  

3 
The ma t r ix  o p e r a t o r  of ( 6 . 6 )  i s  

I .  
h e n c e  d e t  Lh = ( - A h ) d  and i t s  symbol i s  

( 6 . 7 )  

d 0 d 
= L -h (0)  = { 1 

1 
( 2  s i n  + l 2 }  , ( 6 . 8 )  

which  i s  p o s i t i v e  for 0 < 161 s TI . The d i f f e r e n c e  s y s t e m  
( 6 . 6 )  i s  t h e r e f o r e  R-e l l i p t i c .  

t reat  boundary  and  e x t e r i o r  v a l u e s  o f  U t  . 
The boundary  c o n d i t i o n ( 6 . 4 )  i s  a p p r o x i m a t e d  by t h e  way w e  

F o r  s i m p l i c i t y  w e  

* 
Note t h a t  d i f f e r e n t  i n t e r i o r  p o i n t s  may be a d j a c e n t  

e t o  t h e  same e x t e r i o r  p o i n t  . The e x t r a p o l a t e d  e x t e r i o r  
v a l u e  d e p e n d s  on 5 and gb , hcnce  s l i g h t l y  d i f f e r e n t  
ex te r ior  v a l u e s  may c o r r e s p o n d  t o  t h e  same e x t e r i o r  p o i n t .  
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c o n s i d e r  t h e  case of domains whose boundary i s  c o n t a i n e d  i n  
g r i d  l i n e s  t o r  g r i d  p l a n e s ) .  I n  t h i s  c a s e  t h e  v e l o c i t y  normal 
t o  t h e  boundary i s  c o n v e n i e n t l y  d e f i n e d  a t  t h e  c e n t e r  of 

boundary f a c e s ,  and t h e  d i s c r e t e  a n a l o g  t o  (6.5) i s  n a t u r a l l y  
w r i t t e L i  a s  

where 5 r u n s  o v e r  a l l  c e l l  c e n t e r s ,  r u n s  o v e r  a l l  cen-  
h ters o f  boundary f a c e s ,  and G n ( 2 )  i s  t h e  ( g i v e n )  normal 

v e l o c i t y  a t  y . 
Theorem. The  d i s c r e t e  S t o k e s  e q k a t i o n s  ( 6 . 6 1 ,  w i t h  e t t c r i L r  
and bounda2.y v a l u e s  d e t e r m i n e d  by :he boundary  c o n d i t i o n s  a: 
a b o v e ,  h a v e  a u n i q u e  s o l u t i o n  i f  and o n l y  i f  ( 6 3 1  i s  s a t i s -  
fied. 

as t h e  number of unknowns, s i n c e  f o r  e a c h  i n t e r i o r  U . ( x )  

t h e r e  c o r r e s p o n d s  a n  e q u a t i o n  (6 .6b)  a t  15 , and f o r  e a c h  
unknown P h ( y )  t h e r e  c o r r e s p o n d s  a n  e q u a t i o n  ( 6 . 6 a )  a t  y . 
The p r e s s u r e  v a l u e s  Ph are d e t e r m i n e d  o n l y  u p t o  an a d d i t i v e  
c o n s t a n t ,  b u t ,  on t h e  o t h e r  hand,  t h e  e q u a t i o n s  a r e  depender , t ;  
summing ( 6 . 6 a )  o v e r  a l l  c e l l  c e n t e r s  w c - c ; e t  ( 6 . 9 ) .  T h a t  is 
t o  s a y ,  i f  ( 6 . 9 )  i s  n o t  s a t i s f i e d  w e  g e t  a c o n t r a d i c t i o n .  I f  
( 6 . 9 )  i s  s a t i s f i e d ,  we g e t  a dependence of e q u a t i o n s ,  corres- 
ponding  t o  t h e  a r b i t r a r y  c o n s t a n t  i n  
enough t o  show t h a t  i n  t h e  homogeneous case ( E  Z 0 , Eh 0 )  , 
t h e  o n l y  s o l u t i o n  i s  t h e  t r i v i a l  one  ( v  = 0 , P c o n s t a n t ) .  
I n d e e d ,  i f  _Fh 0 it is e a s y  t o  see from (6.6b) t h a t  

- 

The p r o o f  i s  s imple .  The number of e q u a t i o n s  is t h e  same 
h 
3 

Ph . Hence, i t  is 
h 

h -  h -  

where t h e  p o i n t  i n  C1 r u n s  o v e r  a l l  i n t e r i o r  p o s i t i o n s  
of Uh ( p o i n t s  i n  F i g .  6.1); t h e  p a i r  { z , y }  i n  I 2  

j 
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r u n s  o v e r  a l l  p a i r s  o f  n e i g h b o r i n g  i n t e r i o r  p o s i t i o n s  of  U h  i 

t h e  p a i r  (x,zj i n  E 3  r u n s  o v e r  a l l  p a i r s  o f  n e i g h b o r i n g  
p o s i t i o n s  uh w i t h  5 b e i n g  a n  i n t e r i o r  p o s i t i o n  (0 i n  

F i g .  6.11, and - z b e i n g  a boundary o r  e x t e r i o r  p o s i t i o n  

(a i n  F-g. 6 . 1 ) ;  and i n  C4 r u n s  o v e r  a l l  c e l l  c e n t e r s  

( p i n  F i g .  6 . 1 ) .  The term w i t h  Z 4  v a n i s h e s  by ( 6 . 6 a 1 ,  

since Fk E 0 . I n  t h e  ,I3 term, by t h e  way e x t e r i o r  v a l u e s  
are d e f i n e d ,  w e  g e t  

where y i s  t h e  i n t e r i o r  n e i g h b o r  o f  ~f o p p o s i t e  5. Hence, 

1. 

1 '  

h 
( f o r  G E 0 )  U;(Z) = 2 U j ( x )  - 1. 3 1  U h ( x ) ~  

- 

where 1; r u n s  as l2  e x c e p t  f o r  terms added t o  1 3 .  T h i s  
form i s  p o s i t i v e  d e f i n i t e ,  hence  Uh : 0 .  By (6.6b) Ph : c o n s t .  

6.3 D i s t r i b u t i v e  r e l a x a t i o n  
3 

h 
1 -  

We w i l l  t h e r e f o r e  smooth t h e  r e s i d u a l s  o f  t h a t  equat ion by 
r e l a x i n g  it i n  t h e  f o l l o w i n g  n a t u r a l  way: For  a f i x e d  j w e  
s c a n  i n  some order  a l l  t h e  i n t e r i o r  p o i n t s  5 where 
d e f i n e d .  A t  e a c h  s u c h  p o i n t  5 w e  change U.(x) so a s  t o  
s a t i s f y  t h e  j - t h  momentum e q u a t i o n  c e n t e r e d  a t  5 . 

The j-th momentum equation (6.6b) is elliptic i n  U 

U; i s  
h 
3 

Having done such  a sweep f o r  each j = l , . . . , d  , w e  now 
need t o  smooth t h e  e r ror  i n  t h e  c o n t i n u i t y  e q u a t i o n  ( 6 . 6 a ) .  
The r e m a i n i n g  v a r i a ' b l e  l e f t  t o  be r e l a x e d  is' 
seems i n d e e d  t o  c o r r e s p o n d  " g e o g r a p h i c a l l y "  to '  t h e  c o n t i n u i t y  
e q u a t i o n ,  i . e .  , Ph i s  d e f i n e d  where ( 6 . 6 a )  i s  c e n t e r e d .  But 
Ph docs n o t  even  a p p e a r  i n  ( 6 . 6 a )  , so by i t s e l f  i t  c a n n o t  be 

u s e d  to r e l a x  t h a t  e q u a t i o n .  Here w e  r e c a l l  o u r  l e s s o n  from 
t h e  Cauchy-Riemann e q u a t i o n s  ( S e c t i o n  5 . 3 ) :  Equat ion  ( 6 . 6 a )  

is  n o t  e l l i p t i c ,  it is o n l y  a p a r t  o f  a n  e l l i p t i c  s y s t e m .  The 
way t o  r e l a x  it is  t h e r e f o r e  by a d i s t r i b u t i v e  r e l a x a t i o n  
designed so as  t o  keep  unchanged t h e  r e s i d u a l s  of  t h e  o t h e r  
e q u a t i o n s  i n  t h e  system. I t  i s  done as  f o l l o w s :  

Ph  , which 

. .  

h h  h L e t  ( p  , u l , . . . , u d )  be t h e  c u r r e n t  approximat ion  t o  
h ' h  h (P , U 1 , . . . , U d )  . 

order. L e t  be t h e  curre?; ce l l  c e n t e r  and l e t  
We s c a n  t h e  c e l l  c e n t e r s  i n  some p r e a s s i g n e d  
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( G .  10) 

be the "dynamic residual" at 5 ; i.e., the residual at 
just before relaxing there. The relaxation step at 5 is 

of the following 4d+l changes (see Fig. 6.2(a)): made up 

h 

h 
j 

j 

U 

U 

where 
(6.12) 

j 
and where h j  is h times the unit vector in the x 
direction. Like (5.18-19) above, changes (6.11a,b), (6.12) 
are such that, after changing, ro(z) vanishes. The pressure 
changes (6.11c,dfe) are such that the momentum-equations 
residuals 

h 

h h h  h h  rh = F. + A u. - 2 . p  , j 3 1 3  
(6.13) 

at all points remain unchanged. 

Indeed, another way of writing the relaxation step at 
the cell center is through the characteristic function of 

is a func- x, that cell, which we denote by ; that is, 
t i o n  d e f i n e d  at c e l l  cen te r s ,  w i t h  x,(&) = 0 except f o r  

xx(x) = 1 . Changes (6.11) can be writtsn as 

'5 h 
h 
- 

k-h ph + ph - 6hA 'xx . - 

( j  = l l . .  . ,d) 
(6.14) 

Substituting these changes into (6.13) we immediately get 
rh + ~ . h  - 6h;lh3hxh + 6ha h h h  . L ,  xx 

j 3 3 5  3 -  

( j = l,...,d) . h 
1 '  

= r  

Near the boundary it is not possible to precisely pre- 
h h serve rl,...,r2 while relaxing the continuity equation. 

. -  
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6 +s -- 26 
h 

+- 

FIGURE 6 . 2  Continuity-Equation Relaxaticn Step in 
2-Dimensional Stokes Equations. 

The cell at the center of the figure is re laxed  by 9 
simultaneous changes. The amount of change is displayed 
at.the position of the changed variable. (cf. Fig.6.1.) 
6 = h r0(3)/4 , where ro(x)  .is the dynamic residual 
at the relaxed cell. 

Configuration of changes in a boundary cell. 
h 6 = h r 0 ( g ) / 3  . 

Configuration of changes in a corner cell. 
h 6 = h r0(x)/2 . 

h h 
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N e i t h e r  i s  it n e c e s s a r y .  I t  is enough t o  r e l a x  r: so t h a t  
t h e  c h a n g e s  i n t r o d u c e d  t o  
(when t h e  momentum e q u a t i o n s  are  r e l a x e d )  s i g n i f i c a n t  “ f eed -  

b a c k ” /  i . e . ,  too l a r g e  changes  back i n  ro . Near t h e  boun- 
d a r y  feed-back  changes  a r e  p a r t l y  “ a b s o r b e d ”  by t h e  boundary 

c o n d i t i o n s ,  and  t h e r e f o r e  such  “ s m a l l  feed-back‘‘ schemes a r e  
e a s y  t o  d e s i g n .  
F i g s .  6 . 2  ( b )  o r  6 . 2  ( c )  , it is  e a s y  t o  c a l c u l a t e  and show t h a t  
feed-back c h a n g e s  i n  r: a r e  small enough. T h a t  i s ,  t h e  sum 

h o f  all feed-back  changes i n  rO i s  z e r o  ( h e n c e ,  smooth e r r o r s  
c o n t r i b u t e  l i t t l e  t o  t h e  f e e d - b a c k ) ,  w h i l e  t h e  sum of t h e i r  
a b s o l u t e  v a l u e s  i s  o n l y  a s m a l l  f r a c t i o n  o f  t h e  r e l a x e d  quan- 
t i t y .  Moreover ,  t h e  s i g n s  o f  t h e  feed-back r e s i d u a l  changes  
i s  o p p o s i t e  t o  t h e  d i rec t  changes  i n  r! c a u s e d  by t h e  s t e p  
shown i n  F i g s .  6 . 2 ( b )  o r  6 . 2 ( c ) .  

h r l , . .  . , r h  d d o  n a t  cause l a t e r  

h 

I f  f o r  example w e  u s e  t h e  scheme shown i n  

The smooth ing  f a c t o r  i s  most e a s i l y  c a l c u l a t e d  by t h e  
a m p l i f i c a t i o n  m a t r i x  of  t h e  r e s i d u a l s  ro , r l , . . . , rd  . For t h e  
F o u r i e r  component e x p ( i  i._x/h) = exp(iZ0. j  x j  /h )  , l e t  

(A0 , A 1  I .  - - r A d )  

t h e  r e l a x a t i o n  sweep,  and l e t  
ponding a m p l i t u d e s  a f t e r  t h e  sweep. The sweep i s  made o f  d + l  

p a s s e s .  I n  t h e  j - t h  p a s s  (j = l , . . . , d )  , r e l a x i n g  t h e  j - t h  
momemtum e q u a t i o n ,  A is m u l t i p l i e d  by h ( 8 )  , w h i l e  o t h e r  
m o m e m t u m  a m p l i t u d e s  Ak (1 < k < d , k # j )  r e m i n  
unchanged.  

h h  h 

h h  h ( r  , r -1 , . . . , rd) be t h e  a m p l i t u d e s  of b e f o r e  
be  t h e  c o r r e s -  ( ~ o , ~ l l . .  . ,Ad)  

j 

( 6 . 1 5 )  

is  t h e  G a u s s - S e i d c l  a m p l i f i c a t i o n  f a c t o r  f o r  t h e  ( 2 c + l )  - p o i n t  

P o i s s o n  e q u a t i o n  ( c f .  e . g . ,  Sec .  3 . 1  i n  [ B 3 1 ) .  The j - t h  p a s s  
d o e s  change  A. , a d d i n g  t o  it some m u l t i p l e  o f  A .  . I n  t h e  
l a s t  p a s s ,  r e l a x i n g  t h e  c o n t i n u i t y  ‘ e q u a t i o n ,  A 1 , . . . , A d  

remain  unchanged,  and A. is  m u l t i p l i e d  by x(e) I c f .  
Sec .  5.3 a b o v e ) .  Iience 

3 

-79- 



The l a rges t  e i g e n v a l u e  of t h i s  ( t r i a n g u l a r )  a m p l i f i c a t i o n  
mat r ix  is A(!) , hence  t h e  smoothing f z c t o r  i s  

.500 i f  d = 2  

.567 i f  d = 3  , 
- p = max I A ( ~ ) I  = { 

-p lT I e I <IT 
( 6 . 1 7 )  

t h e  same smoothing f a c t o r  a s  i n  Gauss-Seidel  r e l a x a t i o n  f o r  
t h e  s t a n d a r d  P o i s s o n  e q u a t i o n .  

6.4 M u l t i - g r i d  p rocedures  
F o r  m u l t i - g r i d  p r o c e s s i n g  of  S t o k e s  e q u a t i o n s  w e  u s e  a 

where 
'M s e q u e n c e  of g r i d s  ( l e v e l s )  w i t h  s i z e s  

l e v e l  k are  e v e r y  o t h e r  g r i d  l i n e  ( p l a n e )  of l e v e l  k + l  . 
Hence, e a c h  c e l l  of l e v e l  k i s  t h e  un ion  of Z d  c e l l s  of 
l e v e l  k+l - I n  t w o  d imens ions  (d=2)  t h e  c o n f i g u r a t i o n  i s  
shown i n  F i g .  6 .3 .  I n s t e a d  of 

u s e d  i n  S e c t i o n s  6.2 and 6 .3 ,  t h e  d i s c r e t e  € u n c t i o n s  and  

r e s p e c t i v e l y .  

h l l . . . ,  

hk+l  = 2 1 hk , and where t h e  g r i d  l i n e s  ( o r  Gr id  p l a n e s )  o f  

h , yh , Ph , gh , p h  and  

operators on  the k- th  l e v e l  a r e  now d e n o t e d  by E k , I! k , k , 
Ck , pk and 2 5  , 

FIGURE 6 . 3  . A  c o a r s e - g r i d  c e l l  d i v i d e d  i n t o  fine-_cirid c e l l s .  

. 

. 
~- 

Same n o t a t i o n  a s  i n  F ig .  6 . 1  is u s e d ,  w i t h  heavy t y p e  f o r  t h e  
coarse g r i d  and  l i g h t  t y p e  f o r  t h e  f i n e  g r i d .  
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We have solved Stokes equations using bcth Cycle C and 
the Full Multi-Grid (FIlG) algorithms (see Secs. 2 . 2  and 2 . 6 ) .  

For coarse-grid corrections we used alternatively the Correc- 
tion Scheme (CS) and the Full-Approximation Scheme ( f A S ) ,  with 
identical results. We describe here the procedures in terms 
of FAS, since CS is not extendable to the nonlinear Navier- 
stokes equations. 

Coarse-to-f ine interpolations. In the FMG algorithm, tht? 
first coarse-to-fine interpolation (2.11) has to be of order 
at least four for the velocities and at least three for the 
pressure. The design of such interpolations is straight- 
forward, although it turns out somewhat cumbersome near 
boundaries. 

k+l The coarse-to-fine interpolacion of corrections ( Ik 
in (2.15)) has to be of orders at least two for the velocities 
and one for the pressure. We used bilinear (i.e., order two) 
interpolations for both. 

The fine-to-coaise transfers are made by averaging. For 
the FAS transfer of u 

k+l , ( j  = 1 ,..., d) , which can be either the for the r 
minimal-operations transfer 

k+l we can use the same averaging as 
j 

j 

k+l =k+l (6.18) 
1 '  G pd k+l - k+l - P1 u j  

k 
'k+ l  'j 

(j = 1 ,  ..., c i )  
or the full weighting 

(6.19) 

(j = 1,. . . ,d) , 
where the hat in (6.18) indicates the term to be skipped in 
the sequence. The residual-weighting (6.18) is less expensive 
than (6.191, especially since it requires calculating only one 
half of the fine-grid residuals. But (6.19) is more reliable 
in the nonlinear case and near boundaries, since it is "full" 
i.e., it transfers all the fine-grid residuals, attaching the 
same total weight to each of them. 

The FAS transfer of p k+l can be made with the same 
weighting as the transfer of the continuity-equation residuals 

k k+l k+l k+l ,k+l 
'k+l rO = '1 * ' .  'd 0 r (6.20) 
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which is both simplest and full. In fact, if the mininal- 
k + l  operations transfer (6.18) is used for the velocities 

then (6.20) need not really be calculated: If the FP.S con- 
tinuity equation on level k is written in the form 

uj 

k k  k 1 a .  u = fo 
j=1 7 1  

(6.21a 

11 (where fi Fo on the currently finest level .II 1 , it is 
easy to see that (6.20) is equivalent to 

r (k < 1 1 )  r 
k k + l  k + l  fk+l 

0 f o  = 111 ... bd (6.21b 

k + l  which does not depend on 

The compatibility condition (6.9) is automatically 
obtained (upto round-off errors) on all levels provided. it 
holds on the finest one. This results directly from (6.20). 

Switching criteria. Since the rate of smoothing of all 
the relaxation passes is the same, we could base our algorithm 

(see Sec. 2.2)) on residual norm of the form 

(6.22) 

where rk are defined in (6.101, (6.13), and the norm is the 

L2 norm, sag. There was no sensitivity to the choice of 
a j  > 0 , 
a1 - ... = ul = 3 . Another alternative is to use a fixed 
algorithm, such as Fig. 2.2. 

j 

and one could for example use aO = 1 , 
- 

T-extrapolations have first failed to yield impressive 
improvements. Only later we realized the reason: In a 
staggered grid, in order to employ T-extrapolation, the  

coarse-to-fine interpolation (2.12) must be of a higher 
order. 

6.5 Numerical Results 
For programming simplicity we confined our experiments to 

two-dimensional (d = 2 )  rectacgles. (Experim2nts with many 
equations [Sl] conclusively show that the shape of the domain 
does not significantly affect the performance of the 
algorithm.) We first experimented with cycling algorithms 
(See. 2.6). Since the smoothing factor 2 = .50  is the same - 

V 
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. 

-- 
Number o f  6 
sweeps on  ( S e e  S t e p  F 

f i n e s t  g r i d  i n  Sec.  2.2 & 
p e r  c y c l e  Sec. 4.7.2)  

1 .4 

1 . 5  

2 . 3  
2 . 4  

3 .1 

0 

P ' 

e x p e r i m e n t a l  Mode 
a n a l y s i s  

. 6 6 1  . 638  

. 6 4 8  .634  

. 6 8 0  . 6 9 5  

. 7 1 0  . 7 2 5  

.7 1 4  . 7 2 2  

The n e x t  s t e p  w a s  t o  c o n v e r t  our  program f r o m  CS to €AS, 

a n d , t h e n  from c y c l i n g  t o  F u l l  I N u l t i - G r i d  (F'?iG - a s  i n  S e c .  

2 . 2 ) .  Late r ,  t h e  S t o k e s  Prograin was G e n e r a l i z e d  to Xavier- 
S t o k e s .  The FMG r e s u l t s  f o r  S t o k e s  e q u a t i o n s  i s  a s p e c i a l  
case o f  t h e  r e s u l t s  d e s c r i b e d  i n  Sec .  7 . 5  (and  much f u r t h e r  
i n  [D2]) f o r  t h e  Navier -S tokes  e q u a t i o n s .  
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7. STEADY-.STATE INCOETRESSIBLE NAVIER-STOKES EQUATIONS 

7.1 The differential problem - 
The steady-state incompressible Navier-Stokes equations 

in d dimensions are 

1 - g  = Fo (7. la) 

QLJ+lP = E ( 7 .  lb) 

where Q = - A  + R  1 Uiai , R being the Reynolds number. The 
Stokes system (6.1) is the special case R =  0 . In the dis- 
cussion below, especially in the mode analysis (but not in 
the actual solution process) we treat Q as being independent 

of 9 ,  i.e., as if some 'i 
This is equivalent to linearizing the system around some u0 , 
and omitting the lowest order term of the linearized equations 
(the term R 1 (a.Uo)U. in the j-th momentum equation. For 

all Reynolds numbers this term is locally dominated by the- 
second term of QU 

lhaiUjl < 121 ) .  

matrix form 

appears in Q instead of Ui . 

i 1 3  3 

on any scale h such that 
1 '  
We can then write the equations in the 

so that 
system of order 2d , and therefore requires d boundary 
conditions. usually the values of _V on the boundary are 
given. From the general theory of elliptic systems [ADNI it 
follows that the linearized system ( 7 . 2 )  with such boundary 
conditions has one and only one solution, which has all the 
stability and smoothness properties one could expect. 
theoretical results fo r  the nonlinear system are more involved 
and the reader is referred to [Tll. 

det L = - A  Qd-' . Hence (7.1) is again an elliptic 

The 
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7.2 Finite-difEerence approximations 

grid as before (Fig. 6.11, using the differencc equations 
The discretization is carried out on the same staggered 

at cell centers h h  h 1 ai ui = F~ 
i=l 

(7.3a 

h h  Q U. + ah Ph = Fh at j-face centers (j=l,. . . ,d). (7.3b) 
3 3  j 

where Qh is some difference approximation to Q . Since 
det Lh = -Ah(Qh)d-l , it is clear that Lh is T-elliptic if 
and only if Qh is T-elliptic, and Lh has good hT- 

' ellipticity measure if and only if Qh does. Hence, all we 
have to construct is a good approximation to Q . For small 
to moderate hRlgl (i.e., hRllJl not much larger than 1 ) 

this can be done by central differencing (Sec. 3.10.1). But 
for larger hRlLJ1 upstream differencing (Sec. 3.10.2) or 
explicit artificial viscosity terms (Sec. 3.10.3) should be 
used. Either way, the resulting operator contains O(hp) 
artificial viscosity. A better multi-level possibility is to 
employ such 
residual transfers use the central approximation (see Sec. 
3.11). 

Qh only in the relaxation sweeps, while in the 

7.3 DGS relaxation 
Generalizing the scheme in Sec. 6.3 to any elliptic 

operator 
The j-th momentum equation (7.3b) is relaxed by changing 

values of u only, in a manner suitable for the operator 
Qh . For example, if each component U .  has a constant sign 
throughout the domain, a point-wise Gauss-Seidel relaxation 
marching downstream is the most efficient manner: It gives 
a smoothing factor E s .5 , and p = O(hR )-I for large 
hRItlI . If all possible signs of Ui and all possible 
relative magnitudes of hI?IUi/ (i=l,...,d) appear in the 
domain, symmetric line relaxation (for d = 2  or synunetric 
plane relaxation (for d =  3) is the best. Any line (or 
plane) direction may be chosen. Symmetric relaxation means 
that the sweep is made of two passes: In the first pass the 
lines are taken in some, say increasing, order, and in the 
second pass the order is reversed. In two dimensions, for 

Qh , relaxation proceeds as follows: 

h 
j 

1 

- 
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example, a double-pass relaxation sweep has a smoothing factor 
at most . 2  for any (frozen) 5-point 
stream differencing, hence its smoothing factor per one pass 
is 

qh constructed by up- 

p ,c . 2 '  = .447 . 
Having relaxed in this way all the momentum equations 

(j = l  ,...,d) , 
continuity equation (7.3a), by scanning the cells one by one 
in some consistent order. 
1s a generalization of Fig. 6.2 and eqs. (6.14) above: 
Denoting again the center of the cell by 
teristic function by , the relaxation step is 

we then make a pass of relaxation for the 

At each cell the relaxation step 

and its charac- 

x?! 
h h  Uh * Uh - 6ha .x 

j j J E  

ph + ph+ 6hQ h h  xX I - 

(7.4a) 

(7.4b) 

where 6 is still given by (6.12) and (6.10): That is, 6 
is chosen so that the new velocities (7.4a) satisfy the dis- 
crete continuity equation at 5 . 

It is easy to see that changes 7.4 are such that the 
residuals of the momentum equations 

rh = Fj h - Q h h  uj - a j p  h h  , ( j  = l,-..,d) (7.5) j 

are preserved, at least in the approximate sense of regarding 
Qh as locally constant. Except €or the omission of the 
lowest order term (see Sec. 7.1 and 7.4)', this freezing of 
Qh 
(see Sec. 4). Hence it follows, as in Sec. 6.3, that the 
amplification matrix of a compound relaxation sweep has the 
f orm 

is in line with the usual assumption of the mode analysis 

01 ... 'KOd \ K 

where A ( 2 )  is given by (6.15), N is the number of passes 
on the continuity equation incvJded in the sweep, r c ( 8 )  is 
the amplification factor (per p a s s )  of the Qh relaxation, 
and K is the number of passes on each momentum equation. 

c 
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Usually one takes N = K  , and the smoothing factor then is 
- 
P = max max(X(g),K(g)) , ( 7 . 6 )  

so that we still have = . 5  for two dimensional problems 
with symmetric line relaxation (in the momentum equations). 
In case the flow in the entire field is in the same general 
direction, one can use downstream relaxation (for the 
momentum equations) with N > K , since the momentum- 
equations Smoothing is fzster than the continuity-equation 
one (cf. Sec. 2 . 3 ) .  

7 . 4  Multi-grid procedures 
The grids, their relative positions and the interpolation 

procedures between them are the same as for Stokes equations 
(Sec. - 6 . 4 ) .  Because of the nonlinearity, FAS should cf course 
be used, and the full weighting (6.19) is preferable to (6.18) 
in the fine-to-coarse transfers of both the solution and the 
residual function. 

For large values of R , the effect of physical instabi- 
lity (see Sec. 7.6) is felt as deterioration in the smoothing 
and convergence rates of relaxation on the coarse grids. (This 
can be regarded as the effect of the lowest-order term, which 
was neglected in the smoothing analysis). Hence it is 
necessary at large Reynolds numbers to work with accommodative 
algorithms (Sec. 2 . 2 ) .  Such algorithms spend more sweeps an2 
cycles at coarse levels. The overall efficiency, however, is 
not too much affected, since those extra sweeps and cycles 
cost very little. 

7 . 5  Numerical results 
Our codes are st,ill in a stage of development: We 

programmed only two-dimensional problems in rectangular 
domains. More importantly, the symmetric line relaxation for .  
the momentum equations is not yet implemented. Only pointwise 
Gauss-Seidel was so far used. Hence the performance is not 
optimal for problems with reverse flows and large Reynolds 
numbers. On the other hand we could fully check the efficiency 
of our procedure, even foL' large R , for problems where our 
relaxation marching direction is everywhere downstream. For 
such problems the numerical results really fulfill all the 
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theoretical expectations. 
We first experimented with cycling algorithms. For 

small and moderate Reynolds numbers the behavior was essen- 
tially as for Stokes equations, namely the convergence factor 
per relaxation-work-unit was about . 5 0  to . 5 1  for the first 
few cycles, and increased asymptotically to around .65. For 
large Reynolds numbers (50 < R < 4000) the convergence was 
even faster (sometimes much faster) in the first.cycle, but 
it slowed down later. The asymptotic rate is not much 
worse than .65 as long as R does not aFproach physical in- 
stabilities. (In the example shown in [Dl] the asymptotic 
convergence factor for R = 4 0 9 6  seems to be around . 7 8  on a 
64 X 6 4  grid. But the procedure there is not optimal since 
it contains too much work per cycle.) 
results of cycling Navier-Stokes algorithms can be found in 

A collection of 

[D2I 
Full Multi-Grid (FMG) algorithms were then constructed 

and we studied the main question of multi-grid performance: 
How much work is required to solve the difference equations 
"to within the truncation-errors", i . e . ,  to the point where 
the numerical-solution errors /tuh - U I I  , IIvh - VI1 , 

1 1  ph - P 11 
l l U h - U 1 l  , IIvh-VII , IIPh-Pll , where (P,U,V) denotes 

are comparable to the discretization errors 

here the trace of the true differential solution on the 
finest grid, whose meshsize is h , and where the norm is 
the maximum norm. Since the true solution is seldom kr.own, 
we took for our tests either one of the following api?roaches: 

I (i) Specifying (P,V,U) in advance, we computed from them 
I both the forcing terms (FOlF1,F2) , to serve in our 

equations, and the boundary conditions. Such problems turn 
out to be somewhat artificial. (ii) Instead of comparing 
with (P,U,V) , we compared with (P h/2 , ~h/2 vh/2) , ,-he 
solution on a still finer grid, obtained there by many multi- 
grid cycles. 

Our tests confirmed the theoretical prediction that, 
since the smoothing rate is . S I  the FMG algorithm with only 
one multi-grid correction cycle (similar to Fig. 2 . 2 ,  but 
possibly with more cycling on coarse levels) always produces 
a solution within the truncation errors. The work of such 

. 
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algorithm was always less than 10 relaxation-work-units. With 
a more precise choice of the algorithm parameters, we could 
get the work down to 5 - 7  work units. 
reported in [D2]. Here we only reproduce a small example - 
Table 7.1. 

The resaits are fully 

The solution errors for two problems are shown. The 
results are grouped in pairs: the lower entry in each pair 
is the error for our 1-cycle algorithm, while the upper entry 
is the result of many-cycles algorithm, effectiveiy giving 
the discretization error. The domain of the two problems is 
the unit square. The boundary conditions for problem I are 

top and bottom boundaries . f o  
2 U = { i'y(1-y) left boundary 

1 7y2  (1-Y) right boundary 

and V = 0 on all boundaries, and for problem II 

60y2 (1-y) (2y-1) right boundary 

other boundaries 

and V =  0 on all boundaries. Our 1-cycle algorithm contains 
at the end two relaxation sweeps on the finest. grid. A t  most 
one of them is really needed in order to obtain the level of 
errors shown in the table. Hence the shown arr.ount of work 

units could be reduced by at least 1. Note that Problem II 
contains a backward flow, and that only forward rejaxation was 
used. With symmetric relaxation the results for R=100 should 
be improved. Note also that we used weighted averages of cen- 
tral and upstream differencing. Hence for Rh ;> 1 our 
accuracy is O(h) . 
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L. 

Relax. 
Work 
Units 

23.3  
9 . 6  

26 .4  
7 .7  

2 6 . 8  
7 .2  

2 8 . 9  
9 .2  

27 .3  
7 .9  

43.4 
9.7 

2 7 . 2  
7 . 1. 

26 .8  
7 . 7  

2 8 . 4  
7 .3  

4 7 . 7  
10 .4  

4 5 . 1  
9 . 8  - 

Grid 

i 
I 

10 0 

50c 

- 
0 

8 

10( 

L6 x16  

32x32  

16 x 1 6  

3 2 x 3 2  

3 2 x 3 2  

3 2 x 3 2  

1 6 x 1 6  

3 2 x 3 2  

1 6 x 1 6  

3 2 x 3 2  

TABLE 7 . 1  

,00580  
. 0 0 5 7 7  

. 0 0 1 4 7  

.00157  

. 0 0 0 3 7 6  

.000417  

. 0 0 3 8 0  

.00376 

. 0 0 1 5 3  

.00154  

. 0 0 3 7 9  

. 0 0 4 0 7  

.000476  

. 0 0 0 4 9 8  

.00178  

. 0 0 1 9 6  

. 0 0 0 5 0 2  

. 0 0 0 5 8 9  

. 0 2 9 2  

.0384  

. . 0149  
.0207  

. 0 0 6 8 0  
, 0 0 7 2 8  

. 0 0 1 7 0  

. 0 0 1 8 1  

. 0 0 0 4 1 7  

. 0 0 0 4 3 8  

. 0 0 3 8 3  

. 0 0 3 7 2  

. 0 0 2 3 7  

. 0 0 2 4 0  

. 0 0 2 8 8  

.00367  

. 0 0 0 6 6 1  

. 0 0 0 7 4 8  

. 0 0 2 8 1  

. 0 0 2 8 9  

. 0 0 0 6 7 9  

. 0 0 0 7 7 6  

. 0 3 1 5  

. 0 4 0 2  

. 0 1 7 0  

. 0 2 3 4  

l lph -Po / I  
/ I  Ph -Po I I  

- 0 6 6 0  
. 0 6 2 3  

.0159  

. 0 1 7 1  

. 0 0 3 8 5  

. 0 0 4 7 5  

. 3 7 4  
- 3 3 1  

.I14 

. 1 1 5  

1 . 7 3 0  
1.828 

. 0 0 9 5 6  
,01240  

.064  3 

. 0 8 3 0  

.0156  
- 0 2 2 1  

2 .478  
3 .457  

1 . 2 3 6  
1 . 8 3 1  

(Po, uo, vo) is the solution on the 6 4  x 6 4  grid. 

7 . 6  Physical instabilities 
The main difference between physical and numerical in- 

stabilities is that the latter first appear at high- 
frequencies (where the numerical *Tolution does not approxi- 
mate the differential one) while the former first appear at 
low-frequency modes, whose Reynolds number (i.e., R times 
their wavelength) is large. The slow divergence of such 



smooth modes in a relaxation process (which may be regarded 
as a time-like process) does not trouble the error-snootning 
process. Also, the instability does not appear when t h e  

multi-grid process (see Fig. 2.2) first works at coarse levels, 
since the numerical scheme contains enough artificial vis- 
cosity {see Sec. 3.10). It is only when the process comes 
back to coarse levels after visiting sufficiently fine levels 
(where artificial viscosity is sufficiently small) that the 
physical instability starts to show up. 

It is clear that no purely iterative (time-like) solu- 
tion process can solve the steady-state flow equations when 
the solution is unstable. In the multi-grid process, however, 
this limitation is, in principle, removed, since, at each 
cycle, the coarsest-grid equations can be solved directly, n.st 
by relaxation. It is in t h i s  way p o s s i b Z e  t o  c a l c u l a t e  u n -  
s t a b l e  s o Z u t i o n s ,  provided the coarsest grid used is fine 
enough to resolve the unstable modes. 

.. 
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